ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  equidqe GIF version

Theorem equidqe 1520
Description: equid 1689 with some quantification and negation without using ax-4 1498 or ax-17 1514. (Contributed by NM, 13-Jan-2011.) (Proof shortened by Wolf Lammen, 27-Feb-2014.)
Assertion
Ref Expression
equidqe ¬ ∀𝑦 ¬ 𝑥 = 𝑥

Proof of Theorem equidqe
StepHypRef Expression
1 ax-9 1519 . 2 ¬ ∀𝑦 ¬ 𝑦 = 𝑥
2 ax-8 1492 . . . . 5 (𝑦 = 𝑥 → (𝑦 = 𝑥𝑥 = 𝑥))
32pm2.43i 49 . . . 4 (𝑦 = 𝑥𝑥 = 𝑥)
43con3i 622 . . 3 𝑥 = 𝑥 → ¬ 𝑦 = 𝑥)
54alimi 1443 . 2 (∀𝑦 ¬ 𝑥 = 𝑥 → ∀𝑦 ¬ 𝑦 = 𝑥)
61, 5mto 652 1 ¬ ∀𝑦 ¬ 𝑥 = 𝑥
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wal 1341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-5 1435  ax-gen 1437  ax-ie2 1482  ax-8 1492  ax-i9 1518
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-fal 1349
This theorem is referenced by:  ax4sp1  1521
  Copyright terms: Public domain W3C validator