Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > equidqe | GIF version |
Description: equid 1689 with some quantification and negation without using ax-4 1498 or ax-17 1514. (Contributed by NM, 13-Jan-2011.) (Proof shortened by Wolf Lammen, 27-Feb-2014.) |
Ref | Expression |
---|---|
equidqe | ⊢ ¬ ∀𝑦 ¬ 𝑥 = 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-9 1519 | . 2 ⊢ ¬ ∀𝑦 ¬ 𝑦 = 𝑥 | |
2 | ax-8 1492 | . . . . 5 ⊢ (𝑦 = 𝑥 → (𝑦 = 𝑥 → 𝑥 = 𝑥)) | |
3 | 2 | pm2.43i 49 | . . . 4 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑥) |
4 | 3 | con3i 622 | . . 3 ⊢ (¬ 𝑥 = 𝑥 → ¬ 𝑦 = 𝑥) |
5 | 4 | alimi 1443 | . 2 ⊢ (∀𝑦 ¬ 𝑥 = 𝑥 → ∀𝑦 ¬ 𝑦 = 𝑥) |
6 | 1, 5 | mto 652 | 1 ⊢ ¬ ∀𝑦 ¬ 𝑥 = 𝑥 |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∀wal 1341 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-5 1435 ax-gen 1437 ax-ie2 1482 ax-8 1492 ax-i9 1518 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-fal 1349 |
This theorem is referenced by: ax4sp1 1521 |
Copyright terms: Public domain | W3C validator |