| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > equidqe | GIF version | ||
| Description: equid 1715 with some quantification and negation without using ax-4 1524 or ax-17 1540. (Contributed by NM, 13-Jan-2011.) (Proof shortened by Wolf Lammen, 27-Feb-2014.) |
| Ref | Expression |
|---|---|
| equidqe | ⊢ ¬ ∀𝑦 ¬ 𝑥 = 𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-9 1545 | . 2 ⊢ ¬ ∀𝑦 ¬ 𝑦 = 𝑥 | |
| 2 | ax-8 1518 | . . . . 5 ⊢ (𝑦 = 𝑥 → (𝑦 = 𝑥 → 𝑥 = 𝑥)) | |
| 3 | 2 | pm2.43i 49 | . . . 4 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑥) |
| 4 | 3 | con3i 633 | . . 3 ⊢ (¬ 𝑥 = 𝑥 → ¬ 𝑦 = 𝑥) |
| 5 | 4 | alimi 1469 | . 2 ⊢ (∀𝑦 ¬ 𝑥 = 𝑥 → ∀𝑦 ¬ 𝑦 = 𝑥) |
| 6 | 1, 5 | mto 663 | 1 ⊢ ¬ ∀𝑦 ¬ 𝑥 = 𝑥 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∀wal 1362 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1461 ax-gen 1463 ax-ie2 1508 ax-8 1518 ax-i9 1544 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 |
| This theorem is referenced by: ax4sp1 1547 |
| Copyright terms: Public domain | W3C validator |