![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > equidqe | GIF version |
Description: equid 1701 with some quantification and negation without using ax-4 1510 or ax-17 1526. (Contributed by NM, 13-Jan-2011.) (Proof shortened by Wolf Lammen, 27-Feb-2014.) |
Ref | Expression |
---|---|
equidqe | ⊢ ¬ ∀𝑦 ¬ 𝑥 = 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-9 1531 | . 2 ⊢ ¬ ∀𝑦 ¬ 𝑦 = 𝑥 | |
2 | ax-8 1504 | . . . . 5 ⊢ (𝑦 = 𝑥 → (𝑦 = 𝑥 → 𝑥 = 𝑥)) | |
3 | 2 | pm2.43i 49 | . . . 4 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑥) |
4 | 3 | con3i 632 | . . 3 ⊢ (¬ 𝑥 = 𝑥 → ¬ 𝑦 = 𝑥) |
5 | 4 | alimi 1455 | . 2 ⊢ (∀𝑦 ¬ 𝑥 = 𝑥 → ∀𝑦 ¬ 𝑦 = 𝑥) |
6 | 1, 5 | mto 662 | 1 ⊢ ¬ ∀𝑦 ¬ 𝑥 = 𝑥 |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∀wal 1351 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-5 1447 ax-gen 1449 ax-ie2 1494 ax-8 1504 ax-i9 1530 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-fal 1359 |
This theorem is referenced by: ax4sp1 1533 |
Copyright terms: Public domain | W3C validator |