![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pm2.21i | GIF version |
Description: A contradiction implies anything. Inference from pm2.21 618. (Contributed by NM, 16-Sep-1993.) (Revised by Mario Carneiro, 31-Jan-2015.) |
Ref | Expression |
---|---|
pm2.21i.1 | ⊢ ¬ 𝜑 |
Ref | Expression |
---|---|
pm2.21i | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.21i.1 | . 2 ⊢ ¬ 𝜑 | |
2 | pm2.21 618 | . 2 ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-in2 616 |
This theorem is referenced by: pm2.24ii 648 2false 702 pm3.2ni 814 falim 1378 pclem6 1385 nfnth 1476 alnex 1510 ax4sp1 1544 rex0 3464 0ss 3485 abf 3490 ral0 3548 int0 3884 nnsucelsuc 6544 nnmordi 6569 nnaordex 6581 0er 6621 fiintim 6985 elnnnn0b 9284 xltnegi 9901 xnn0xadd0 9933 frec2uzltd 10474 sum0 11531 fsum2dlemstep 11577 prod0 11728 fprod2dlemstep 11765 nn0enne 12043 exprmfct 12276 prm23lt5 12401 4sqlem18 12546 0met 14552 lgsdir2lem3 15146 gausslemma2dlem0i 15173 2lgsoddprmlem3 15199 |
Copyright terms: Public domain | W3C validator |