Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pm2.21i | GIF version |
Description: A contradiction implies anything. Inference from pm2.21 607. (Contributed by NM, 16-Sep-1993.) (Revised by Mario Carneiro, 31-Jan-2015.) |
Ref | Expression |
---|---|
pm2.21i.1 | ⊢ ¬ 𝜑 |
Ref | Expression |
---|---|
pm2.21i | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.21i.1 | . 2 ⊢ ¬ 𝜑 | |
2 | pm2.21 607 | . 2 ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-in2 605 |
This theorem is referenced by: pm2.24ii 637 2false 691 pm3.2ni 803 falim 1357 pclem6 1364 nfnth 1453 alnex 1487 ax4sp1 1521 rex0 3425 0ss 3446 abf 3451 ral0 3509 int0 3837 nnsucelsuc 6455 nnmordi 6480 nnaordex 6491 0er 6531 fiintim 6890 elnnnn0b 9154 xltnegi 9767 xnn0xadd0 9799 frec2uzltd 10334 sum0 11325 fsum2dlemstep 11371 prod0 11522 fprod2dlemstep 11559 nn0enne 11835 exprmfct 12066 prm23lt5 12191 0met 12984 lgsdir2lem3 13531 |
Copyright terms: Public domain | W3C validator |