| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm2.21i | GIF version | ||
| Description: A contradiction implies anything. Inference from pm2.21 618. (Contributed by NM, 16-Sep-1993.) (Revised by Mario Carneiro, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| pm2.21i.1 | ⊢ ¬ 𝜑 |
| Ref | Expression |
|---|---|
| pm2.21i | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.21i.1 | . 2 ⊢ ¬ 𝜑 | |
| 2 | pm2.21 618 | . 2 ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-in2 616 |
| This theorem is referenced by: pm2.24ii 648 2false 702 pm3.2ni 814 falim 1378 pclem6 1385 dcfromcon 1459 nfnth 1479 alnex 1513 ax4sp1 1547 rex0 3469 0ss 3490 abf 3495 ral0 3553 int0 3889 nnsucelsuc 6558 nnmordi 6583 nnaordex 6595 0er 6635 fiintim 7001 elnnnn0b 9312 xltnegi 9929 xnn0xadd0 9961 frec2uzltd 10514 sum0 11572 fsum2dlemstep 11618 prod0 11769 fprod2dlemstep 11806 nn0enne 12086 exprmfct 12333 prm23lt5 12459 4sqlem18 12604 0met 14706 lgsdir2lem3 15357 gausslemma2dlem0i 15384 2lgs 15431 2lgsoddprmlem3 15438 |
| Copyright terms: Public domain | W3C validator |