![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pm2.21i | GIF version |
Description: A contradiction implies anything. Inference from pm2.21 617. (Contributed by NM, 16-Sep-1993.) (Revised by Mario Carneiro, 31-Jan-2015.) |
Ref | Expression |
---|---|
pm2.21i.1 | ⊢ ¬ 𝜑 |
Ref | Expression |
---|---|
pm2.21i | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.21i.1 | . 2 ⊢ ¬ 𝜑 | |
2 | pm2.21 617 | . 2 ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-in2 615 |
This theorem is referenced by: pm2.24ii 647 2false 701 pm3.2ni 813 falim 1367 pclem6 1374 nfnth 1465 alnex 1499 ax4sp1 1533 rex0 3441 0ss 3462 abf 3467 ral0 3525 int0 3859 nnsucelsuc 6492 nnmordi 6517 nnaordex 6529 0er 6569 fiintim 6928 elnnnn0b 9220 xltnegi 9835 xnn0xadd0 9867 frec2uzltd 10403 sum0 11396 fsum2dlemstep 11442 prod0 11593 fprod2dlemstep 11630 nn0enne 11907 exprmfct 12138 prm23lt5 12263 0met 13887 lgsdir2lem3 14434 2lgsoddprmlem3 14462 |
Copyright terms: Public domain | W3C validator |