| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm2.21i | GIF version | ||
| Description: A contradiction implies anything. Inference from pm2.21 618. (Contributed by NM, 16-Sep-1993.) (Revised by Mario Carneiro, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| pm2.21i.1 | ⊢ ¬ 𝜑 |
| Ref | Expression |
|---|---|
| pm2.21i | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.21i.1 | . 2 ⊢ ¬ 𝜑 | |
| 2 | pm2.21 618 | . 2 ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-in2 616 |
| This theorem is referenced by: pm2.24ii 648 2false 702 pm3.2ni 814 falim 1378 pclem6 1385 dcfromcon 1459 nfnth 1479 alnex 1513 ax4sp1 1547 rex0 3468 0ss 3489 abf 3494 ral0 3552 int0 3888 nnsucelsuc 6549 nnmordi 6574 nnaordex 6586 0er 6626 fiintim 6992 elnnnn0b 9293 xltnegi 9910 xnn0xadd0 9942 frec2uzltd 10495 sum0 11553 fsum2dlemstep 11599 prod0 11750 fprod2dlemstep 11787 nn0enne 12067 exprmfct 12306 prm23lt5 12432 4sqlem18 12577 0met 14620 lgsdir2lem3 15271 gausslemma2dlem0i 15298 2lgs 15345 2lgsoddprmlem3 15352 |
| Copyright terms: Public domain | W3C validator |