| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm2.21i | GIF version | ||
| Description: A contradiction implies anything. Inference from pm2.21 620. (Contributed by NM, 16-Sep-1993.) (Revised by Mario Carneiro, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| pm2.21i.1 | ⊢ ¬ 𝜑 |
| Ref | Expression |
|---|---|
| pm2.21i | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.21i.1 | . 2 ⊢ ¬ 𝜑 | |
| 2 | pm2.21 620 | . 2 ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-in2 618 |
| This theorem is referenced by: pm2.24ii 650 2false 706 pm3.2ni 818 falim 1409 pclem6 1416 dcfromcon 1491 nfnth 1511 alnex 1545 ax4sp1 1579 rex0 3509 0ss 3530 abf 3535 ral0 3593 int0 3937 nnsucelsuc 6645 nnmordi 6670 nnaordex 6682 0er 6722 fiintim 7101 elnnnn0b 9421 xltnegi 10039 xnn0xadd0 10071 frec2uzltd 10633 sum0 11907 fsum2dlemstep 11953 prod0 12104 fprod2dlemstep 12141 nn0enne 12421 exprmfct 12668 prm23lt5 12794 4sqlem18 12939 0met 15066 lgsdir2lem3 15717 gausslemma2dlem0i 15744 2lgs 15791 2lgsoddprmlem3 15798 |
| Copyright terms: Public domain | W3C validator |