| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm2.21i | GIF version | ||
| Description: A contradiction implies anything. Inference from pm2.21 620. (Contributed by NM, 16-Sep-1993.) (Revised by Mario Carneiro, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| pm2.21i.1 | ⊢ ¬ 𝜑 |
| Ref | Expression |
|---|---|
| pm2.21i | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.21i.1 | . 2 ⊢ ¬ 𝜑 | |
| 2 | pm2.21 620 | . 2 ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-in2 618 |
| This theorem is referenced by: pm2.24ii 650 2false 705 pm3.2ni 817 falim 1389 pclem6 1396 dcfromcon 1471 nfnth 1491 alnex 1525 ax4sp1 1559 rex0 3489 0ss 3510 abf 3515 ral0 3573 int0 3916 nnsucelsuc 6607 nnmordi 6632 nnaordex 6644 0er 6684 fiintim 7061 elnnnn0b 9381 xltnegi 9999 xnn0xadd0 10031 frec2uzltd 10592 sum0 11865 fsum2dlemstep 11911 prod0 12062 fprod2dlemstep 12099 nn0enne 12379 exprmfct 12626 prm23lt5 12752 4sqlem18 12897 0met 15023 lgsdir2lem3 15674 gausslemma2dlem0i 15701 2lgs 15748 2lgsoddprmlem3 15755 |
| Copyright terms: Public domain | W3C validator |