![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pm2.21i | GIF version |
Description: A contradiction implies anything. Inference from pm2.21 618. (Contributed by NM, 16-Sep-1993.) (Revised by Mario Carneiro, 31-Jan-2015.) |
Ref | Expression |
---|---|
pm2.21i.1 | ⊢ ¬ 𝜑 |
Ref | Expression |
---|---|
pm2.21i | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.21i.1 | . 2 ⊢ ¬ 𝜑 | |
2 | pm2.21 618 | . 2 ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-in2 616 |
This theorem is referenced by: pm2.24ii 648 2false 702 pm3.2ni 814 falim 1378 pclem6 1385 nfnth 1476 alnex 1510 ax4sp1 1544 rex0 3465 0ss 3486 abf 3491 ral0 3549 int0 3885 nnsucelsuc 6546 nnmordi 6571 nnaordex 6583 0er 6623 fiintim 6987 elnnnn0b 9287 xltnegi 9904 xnn0xadd0 9936 frec2uzltd 10477 sum0 11534 fsum2dlemstep 11580 prod0 11731 fprod2dlemstep 11768 nn0enne 12046 exprmfct 12279 prm23lt5 12404 4sqlem18 12549 0met 14563 lgsdir2lem3 15187 gausslemma2dlem0i 15214 2lgs 15261 2lgsoddprmlem3 15268 |
Copyright terms: Public domain | W3C validator |