| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm2.21i | GIF version | ||
| Description: A contradiction implies anything. Inference from pm2.21 618. (Contributed by NM, 16-Sep-1993.) (Revised by Mario Carneiro, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| pm2.21i.1 | ⊢ ¬ 𝜑 |
| Ref | Expression |
|---|---|
| pm2.21i | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.21i.1 | . 2 ⊢ ¬ 𝜑 | |
| 2 | pm2.21 618 | . 2 ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-in2 616 |
| This theorem is referenced by: pm2.24ii 648 2false 703 pm3.2ni 815 falim 1387 pclem6 1394 dcfromcon 1469 nfnth 1489 alnex 1523 ax4sp1 1557 rex0 3479 0ss 3500 abf 3505 ral0 3563 int0 3901 nnsucelsuc 6584 nnmordi 6609 nnaordex 6621 0er 6661 fiintim 7035 elnnnn0b 9346 xltnegi 9964 xnn0xadd0 9996 frec2uzltd 10555 sum0 11743 fsum2dlemstep 11789 prod0 11940 fprod2dlemstep 11977 nn0enne 12257 exprmfct 12504 prm23lt5 12630 4sqlem18 12775 0met 14900 lgsdir2lem3 15551 gausslemma2dlem0i 15578 2lgs 15625 2lgsoddprmlem3 15632 |
| Copyright terms: Public domain | W3C validator |