Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdzfauscl GIF version

Theorem bdzfauscl 13772
Description: Closed form of the version of zfauscl 4102 for bounded formulas using bounded separation. (Contributed by BJ, 13-Nov-2019.)
Hypothesis
Ref Expression
bdzfauscl.bd BOUNDED 𝜑
Assertion
Ref Expression
bdzfauscl (𝐴𝑉 → ∃𝑦𝑥(𝑥𝑦 ↔ (𝑥𝐴𝜑)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem bdzfauscl
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eleq2 2230 . . . . . 6 (𝑧 = 𝐴 → (𝑥𝑧𝑥𝐴))
21anbi1d 461 . . . . 5 (𝑧 = 𝐴 → ((𝑥𝑧𝜑) ↔ (𝑥𝐴𝜑)))
32bibi2d 231 . . . 4 (𝑧 = 𝐴 → ((𝑥𝑦 ↔ (𝑥𝑧𝜑)) ↔ (𝑥𝑦 ↔ (𝑥𝐴𝜑))))
43albidv 1812 . . 3 (𝑧 = 𝐴 → (∀𝑥(𝑥𝑦 ↔ (𝑥𝑧𝜑)) ↔ ∀𝑥(𝑥𝑦 ↔ (𝑥𝐴𝜑))))
54exbidv 1813 . 2 (𝑧 = 𝐴 → (∃𝑦𝑥(𝑥𝑦 ↔ (𝑥𝑧𝜑)) ↔ ∃𝑦𝑥(𝑥𝑦 ↔ (𝑥𝐴𝜑))))
6 bdzfauscl.bd . . 3 BOUNDED 𝜑
76bdsep1 13767 . 2 𝑦𝑥(𝑥𝑦 ↔ (𝑥𝑧𝜑))
85, 7vtoclg 2786 1 (𝐴𝑉 → ∃𝑦𝑥(𝑥𝑦 ↔ (𝑥𝐴𝜑)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1341   = wceq 1343  wex 1480  wcel 2136  BOUNDED wbd 13694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-bdsep 13766
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728
This theorem is referenced by:  bdinex1  13781
  Copyright terms: Public domain W3C validator