Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdzfauscl GIF version

Theorem bdzfauscl 15045
Description: Closed form of the version of zfauscl 4138 for bounded formulas using bounded separation. (Contributed by BJ, 13-Nov-2019.)
Hypothesis
Ref Expression
bdzfauscl.bd BOUNDED 𝜑
Assertion
Ref Expression
bdzfauscl (𝐴𝑉 → ∃𝑦𝑥(𝑥𝑦 ↔ (𝑥𝐴𝜑)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem bdzfauscl
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eleq2 2253 . . . . . 6 (𝑧 = 𝐴 → (𝑥𝑧𝑥𝐴))
21anbi1d 465 . . . . 5 (𝑧 = 𝐴 → ((𝑥𝑧𝜑) ↔ (𝑥𝐴𝜑)))
32bibi2d 232 . . . 4 (𝑧 = 𝐴 → ((𝑥𝑦 ↔ (𝑥𝑧𝜑)) ↔ (𝑥𝑦 ↔ (𝑥𝐴𝜑))))
43albidv 1835 . . 3 (𝑧 = 𝐴 → (∀𝑥(𝑥𝑦 ↔ (𝑥𝑧𝜑)) ↔ ∀𝑥(𝑥𝑦 ↔ (𝑥𝐴𝜑))))
54exbidv 1836 . 2 (𝑧 = 𝐴 → (∃𝑦𝑥(𝑥𝑦 ↔ (𝑥𝑧𝜑)) ↔ ∃𝑦𝑥(𝑥𝑦 ↔ (𝑥𝐴𝜑))))
6 bdzfauscl.bd . . 3 BOUNDED 𝜑
76bdsep1 15040 . 2 𝑦𝑥(𝑥𝑦 ↔ (𝑥𝑧𝜑))
85, 7vtoclg 2812 1 (𝐴𝑉 → ∃𝑦𝑥(𝑥𝑦 ↔ (𝑥𝐴𝜑)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1362   = wceq 1364  wex 1503  wcel 2160  BOUNDED wbd 14967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171  ax-bdsep 15039
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-v 2754
This theorem is referenced by:  bdinex1  15054
  Copyright terms: Public domain W3C validator