Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdsep2 GIF version

Theorem bdsep2 13768
Description: Version of ax-bdsep 13766 with one disjoint variable condition removed and without initial universal quantifier. Use bdsep1 13767 when sufficient. (Contributed by BJ, 5-Oct-2019.)
Hypothesis
Ref Expression
bdsep2.1 BOUNDED 𝜑
Assertion
Ref Expression
bdsep2 𝑏𝑥(𝑥𝑏 ↔ (𝑥𝑎𝜑))
Distinct variable groups:   𝑎,𝑏,𝑥   𝜑,𝑏
Allowed substitution hints:   𝜑(𝑥,𝑎)

Proof of Theorem bdsep2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eleq2 2230 . . . . . 6 (𝑦 = 𝑎 → (𝑥𝑦𝑥𝑎))
21anbi1d 461 . . . . 5 (𝑦 = 𝑎 → ((𝑥𝑦𝜑) ↔ (𝑥𝑎𝜑)))
32bibi2d 231 . . . 4 (𝑦 = 𝑎 → ((𝑥𝑏 ↔ (𝑥𝑦𝜑)) ↔ (𝑥𝑏 ↔ (𝑥𝑎𝜑))))
43albidv 1812 . . 3 (𝑦 = 𝑎 → (∀𝑥(𝑥𝑏 ↔ (𝑥𝑦𝜑)) ↔ ∀𝑥(𝑥𝑏 ↔ (𝑥𝑎𝜑))))
54exbidv 1813 . 2 (𝑦 = 𝑎 → (∃𝑏𝑥(𝑥𝑏 ↔ (𝑥𝑦𝜑)) ↔ ∃𝑏𝑥(𝑥𝑏 ↔ (𝑥𝑎𝜑))))
6 bdsep2.1 . . 3 BOUNDED 𝜑
76bdsep1 13767 . 2 𝑏𝑥(𝑥𝑏 ↔ (𝑥𝑦𝜑))
85, 7chvarv 1925 1 𝑏𝑥(𝑥𝑏 ↔ (𝑥𝑎𝜑))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  wal 1341  wex 1480  BOUNDED wbd 13694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-ext 2147  ax-bdsep 13766
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-cleq 2158  df-clel 2161
This theorem is referenced by:  bdsepnft  13769  bdsepnfALT  13771
  Copyright terms: Public domain W3C validator