| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bdsep2 | GIF version | ||
| Description: Version of ax-bdsep 15820 with one disjoint variable condition removed and without initial universal quantifier. Use bdsep1 15821 when sufficient. (Contributed by BJ, 5-Oct-2019.) |
| Ref | Expression |
|---|---|
| bdsep2.1 | ⊢ BOUNDED 𝜑 |
| Ref | Expression |
|---|---|
| bdsep2 | ⊢ ∃𝑏∀𝑥(𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2269 | . . . . . 6 ⊢ (𝑦 = 𝑎 → (𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑎)) | |
| 2 | 1 | anbi1d 465 | . . . . 5 ⊢ (𝑦 = 𝑎 → ((𝑥 ∈ 𝑦 ∧ 𝜑) ↔ (𝑥 ∈ 𝑎 ∧ 𝜑))) |
| 3 | 2 | bibi2d 232 | . . . 4 ⊢ (𝑦 = 𝑎 → ((𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑦 ∧ 𝜑)) ↔ (𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑)))) |
| 4 | 3 | albidv 1847 | . . 3 ⊢ (𝑦 = 𝑎 → (∀𝑥(𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑦 ∧ 𝜑)) ↔ ∀𝑥(𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑)))) |
| 5 | 4 | exbidv 1848 | . 2 ⊢ (𝑦 = 𝑎 → (∃𝑏∀𝑥(𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑦 ∧ 𝜑)) ↔ ∃𝑏∀𝑥(𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑)))) |
| 6 | bdsep2.1 | . . 3 ⊢ BOUNDED 𝜑 | |
| 7 | 6 | bdsep1 15821 | . 2 ⊢ ∃𝑏∀𝑥(𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑦 ∧ 𝜑)) |
| 8 | 5, 7 | chvarv 1965 | 1 ⊢ ∃𝑏∀𝑥(𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∀wal 1371 ∃wex 1515 BOUNDED wbd 15748 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-ext 2187 ax-bdsep 15820 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-cleq 2198 df-clel 2201 |
| This theorem is referenced by: bdsepnft 15823 bdsepnfALT 15825 |
| Copyright terms: Public domain | W3C validator |