Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdsep2 GIF version

Theorem bdsep2 16207
Description: Version of ax-bdsep 16205 with one disjoint variable condition removed and without initial universal quantifier. Use bdsep1 16206 when sufficient. (Contributed by BJ, 5-Oct-2019.)
Hypothesis
Ref Expression
bdsep2.1 BOUNDED 𝜑
Assertion
Ref Expression
bdsep2 𝑏𝑥(𝑥𝑏 ↔ (𝑥𝑎𝜑))
Distinct variable groups:   𝑎,𝑏,𝑥   𝜑,𝑏
Allowed substitution hints:   𝜑(𝑥,𝑎)

Proof of Theorem bdsep2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eleq2 2293 . . . . . 6 (𝑦 = 𝑎 → (𝑥𝑦𝑥𝑎))
21anbi1d 465 . . . . 5 (𝑦 = 𝑎 → ((𝑥𝑦𝜑) ↔ (𝑥𝑎𝜑)))
32bibi2d 232 . . . 4 (𝑦 = 𝑎 → ((𝑥𝑏 ↔ (𝑥𝑦𝜑)) ↔ (𝑥𝑏 ↔ (𝑥𝑎𝜑))))
43albidv 1870 . . 3 (𝑦 = 𝑎 → (∀𝑥(𝑥𝑏 ↔ (𝑥𝑦𝜑)) ↔ ∀𝑥(𝑥𝑏 ↔ (𝑥𝑎𝜑))))
54exbidv 1871 . 2 (𝑦 = 𝑎 → (∃𝑏𝑥(𝑥𝑏 ↔ (𝑥𝑦𝜑)) ↔ ∃𝑏𝑥(𝑥𝑏 ↔ (𝑥𝑎𝜑))))
6 bdsep2.1 . . 3 BOUNDED 𝜑
76bdsep1 16206 . 2 𝑏𝑥(𝑥𝑏 ↔ (𝑥𝑦𝜑))
85, 7chvarv 1988 1 𝑏𝑥(𝑥𝑏 ↔ (𝑥𝑎𝜑))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wal 1393  wex 1538  BOUNDED wbd 16133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-ext 2211  ax-bdsep 16205
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-cleq 2222  df-clel 2225
This theorem is referenced by:  bdsepnft  16208  bdsepnfALT  16210
  Copyright terms: Public domain W3C validator