Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdsep2 GIF version

Theorem bdsep2 16021
Description: Version of ax-bdsep 16019 with one disjoint variable condition removed and without initial universal quantifier. Use bdsep1 16020 when sufficient. (Contributed by BJ, 5-Oct-2019.)
Hypothesis
Ref Expression
bdsep2.1 BOUNDED 𝜑
Assertion
Ref Expression
bdsep2 𝑏𝑥(𝑥𝑏 ↔ (𝑥𝑎𝜑))
Distinct variable groups:   𝑎,𝑏,𝑥   𝜑,𝑏
Allowed substitution hints:   𝜑(𝑥,𝑎)

Proof of Theorem bdsep2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eleq2 2271 . . . . . 6 (𝑦 = 𝑎 → (𝑥𝑦𝑥𝑎))
21anbi1d 465 . . . . 5 (𝑦 = 𝑎 → ((𝑥𝑦𝜑) ↔ (𝑥𝑎𝜑)))
32bibi2d 232 . . . 4 (𝑦 = 𝑎 → ((𝑥𝑏 ↔ (𝑥𝑦𝜑)) ↔ (𝑥𝑏 ↔ (𝑥𝑎𝜑))))
43albidv 1848 . . 3 (𝑦 = 𝑎 → (∀𝑥(𝑥𝑏 ↔ (𝑥𝑦𝜑)) ↔ ∀𝑥(𝑥𝑏 ↔ (𝑥𝑎𝜑))))
54exbidv 1849 . 2 (𝑦 = 𝑎 → (∃𝑏𝑥(𝑥𝑏 ↔ (𝑥𝑦𝜑)) ↔ ∃𝑏𝑥(𝑥𝑏 ↔ (𝑥𝑎𝜑))))
6 bdsep2.1 . . 3 BOUNDED 𝜑
76bdsep1 16020 . 2 𝑏𝑥(𝑥𝑏 ↔ (𝑥𝑦𝜑))
85, 7chvarv 1966 1 𝑏𝑥(𝑥𝑏 ↔ (𝑥𝑎𝜑))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wal 1371  wex 1516  BOUNDED wbd 15947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-ext 2189  ax-bdsep 16019
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-cleq 2200  df-clel 2203
This theorem is referenced by:  bdsepnft  16022  bdsepnfALT  16024
  Copyright terms: Public domain W3C validator