Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-nalset GIF version

Theorem bj-nalset 15387
Description: nalset 4159 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-nalset ¬ ∃𝑥𝑦 𝑦𝑥
Distinct variable group:   𝑥,𝑦

Proof of Theorem bj-nalset
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 alexnim 1659 . 2 (∀𝑥𝑦 ¬ 𝑦𝑥 → ¬ ∃𝑥𝑦 𝑦𝑥)
2 ax-bdel 15313 . . . . 5 BOUNDED 𝑧𝑧
32ax-bdn 15309 . . . 4 BOUNDED ¬ 𝑧𝑧
43bdsep1 15377 . . 3 𝑦𝑧(𝑧𝑦 ↔ (𝑧𝑥 ∧ ¬ 𝑧𝑧))
5 elequ1 2168 . . . . . 6 (𝑧 = 𝑦 → (𝑧𝑦𝑦𝑦))
6 elequ1 2168 . . . . . . 7 (𝑧 = 𝑦 → (𝑧𝑥𝑦𝑥))
7 elequ1 2168 . . . . . . . . 9 (𝑧 = 𝑦 → (𝑧𝑧𝑦𝑧))
8 elequ2 2169 . . . . . . . . 9 (𝑧 = 𝑦 → (𝑦𝑧𝑦𝑦))
97, 8bitrd 188 . . . . . . . 8 (𝑧 = 𝑦 → (𝑧𝑧𝑦𝑦))
109notbid 668 . . . . . . 7 (𝑧 = 𝑦 → (¬ 𝑧𝑧 ↔ ¬ 𝑦𝑦))
116, 10anbi12d 473 . . . . . 6 (𝑧 = 𝑦 → ((𝑧𝑥 ∧ ¬ 𝑧𝑧) ↔ (𝑦𝑥 ∧ ¬ 𝑦𝑦)))
125, 11bibi12d 235 . . . . 5 (𝑧 = 𝑦 → ((𝑧𝑦 ↔ (𝑧𝑥 ∧ ¬ 𝑧𝑧)) ↔ (𝑦𝑦 ↔ (𝑦𝑥 ∧ ¬ 𝑦𝑦))))
1312spv 1871 . . . 4 (∀𝑧(𝑧𝑦 ↔ (𝑧𝑥 ∧ ¬ 𝑧𝑧)) → (𝑦𝑦 ↔ (𝑦𝑥 ∧ ¬ 𝑦𝑦)))
14 pclem6 1385 . . . 4 ((𝑦𝑦 ↔ (𝑦𝑥 ∧ ¬ 𝑦𝑦)) → ¬ 𝑦𝑥)
1513, 14syl 14 . . 3 (∀𝑧(𝑧𝑦 ↔ (𝑧𝑥 ∧ ¬ 𝑧𝑧)) → ¬ 𝑦𝑥)
164, 15eximii 1613 . 2 𝑦 ¬ 𝑦𝑥
171, 16mpg 1462 1 ¬ ∃𝑥𝑦 𝑦𝑥
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104  wb 105  wal 1362  wex 1503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-13 2166  ax-14 2167  ax-bdn 15309  ax-bdel 15313  ax-bdsep 15376
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1472
This theorem is referenced by:  bj-vprc  15388
  Copyright terms: Public domain W3C validator