Step | Hyp | Ref
| Expression |
1 | | alexnim 1641 |
. 2
⊢
(∀𝑥∃𝑦 ¬ 𝑦 ∈ 𝑥 → ¬ ∃𝑥∀𝑦 𝑦 ∈ 𝑥) |
2 | | ax-bdel 13856 |
. . . . 5
⊢
BOUNDED 𝑧 ∈ 𝑧 |
3 | 2 | ax-bdn 13852 |
. . . 4
⊢
BOUNDED ¬ 𝑧 ∈ 𝑧 |
4 | 3 | bdsep1 13920 |
. . 3
⊢
∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ (𝑧 ∈ 𝑥 ∧ ¬ 𝑧 ∈ 𝑧)) |
5 | | elequ1 2145 |
. . . . . 6
⊢ (𝑧 = 𝑦 → (𝑧 ∈ 𝑦 ↔ 𝑦 ∈ 𝑦)) |
6 | | elequ1 2145 |
. . . . . . 7
⊢ (𝑧 = 𝑦 → (𝑧 ∈ 𝑥 ↔ 𝑦 ∈ 𝑥)) |
7 | | elequ1 2145 |
. . . . . . . . 9
⊢ (𝑧 = 𝑦 → (𝑧 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧)) |
8 | | elequ2 2146 |
. . . . . . . . 9
⊢ (𝑧 = 𝑦 → (𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑦)) |
9 | 7, 8 | bitrd 187 |
. . . . . . . 8
⊢ (𝑧 = 𝑦 → (𝑧 ∈ 𝑧 ↔ 𝑦 ∈ 𝑦)) |
10 | 9 | notbid 662 |
. . . . . . 7
⊢ (𝑧 = 𝑦 → (¬ 𝑧 ∈ 𝑧 ↔ ¬ 𝑦 ∈ 𝑦)) |
11 | 6, 10 | anbi12d 470 |
. . . . . 6
⊢ (𝑧 = 𝑦 → ((𝑧 ∈ 𝑥 ∧ ¬ 𝑧 ∈ 𝑧) ↔ (𝑦 ∈ 𝑥 ∧ ¬ 𝑦 ∈ 𝑦))) |
12 | 5, 11 | bibi12d 234 |
. . . . 5
⊢ (𝑧 = 𝑦 → ((𝑧 ∈ 𝑦 ↔ (𝑧 ∈ 𝑥 ∧ ¬ 𝑧 ∈ 𝑧)) ↔ (𝑦 ∈ 𝑦 ↔ (𝑦 ∈ 𝑥 ∧ ¬ 𝑦 ∈ 𝑦)))) |
13 | 12 | spv 1853 |
. . . 4
⊢
(∀𝑧(𝑧 ∈ 𝑦 ↔ (𝑧 ∈ 𝑥 ∧ ¬ 𝑧 ∈ 𝑧)) → (𝑦 ∈ 𝑦 ↔ (𝑦 ∈ 𝑥 ∧ ¬ 𝑦 ∈ 𝑦))) |
14 | | pclem6 1369 |
. . . 4
⊢ ((𝑦 ∈ 𝑦 ↔ (𝑦 ∈ 𝑥 ∧ ¬ 𝑦 ∈ 𝑦)) → ¬ 𝑦 ∈ 𝑥) |
15 | 13, 14 | syl 14 |
. . 3
⊢
(∀𝑧(𝑧 ∈ 𝑦 ↔ (𝑧 ∈ 𝑥 ∧ ¬ 𝑧 ∈ 𝑧)) → ¬ 𝑦 ∈ 𝑥) |
16 | 4, 15 | eximii 1595 |
. 2
⊢
∃𝑦 ¬ 𝑦 ∈ 𝑥 |
17 | 1, 16 | mpg 1444 |
1
⊢ ¬
∃𝑥∀𝑦 𝑦 ∈ 𝑥 |