| Step | Hyp | Ref
 | Expression | 
| 1 |   | alexnim 1662 | 
. 2
⊢
(∀𝑥∃𝑦 ¬ 𝑦 ∈ 𝑥 → ¬ ∃𝑥∀𝑦 𝑦 ∈ 𝑥) | 
| 2 |   | ax-bdel 15467 | 
. . . . 5
⊢
BOUNDED 𝑧 ∈ 𝑧 | 
| 3 | 2 | ax-bdn 15463 | 
. . . 4
⊢
BOUNDED ¬ 𝑧 ∈ 𝑧 | 
| 4 | 3 | bdsep1 15531 | 
. . 3
⊢
∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ (𝑧 ∈ 𝑥 ∧ ¬ 𝑧 ∈ 𝑧)) | 
| 5 |   | elequ1 2171 | 
. . . . . 6
⊢ (𝑧 = 𝑦 → (𝑧 ∈ 𝑦 ↔ 𝑦 ∈ 𝑦)) | 
| 6 |   | elequ1 2171 | 
. . . . . . 7
⊢ (𝑧 = 𝑦 → (𝑧 ∈ 𝑥 ↔ 𝑦 ∈ 𝑥)) | 
| 7 |   | elequ1 2171 | 
. . . . . . . . 9
⊢ (𝑧 = 𝑦 → (𝑧 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧)) | 
| 8 |   | elequ2 2172 | 
. . . . . . . . 9
⊢ (𝑧 = 𝑦 → (𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑦)) | 
| 9 | 7, 8 | bitrd 188 | 
. . . . . . . 8
⊢ (𝑧 = 𝑦 → (𝑧 ∈ 𝑧 ↔ 𝑦 ∈ 𝑦)) | 
| 10 | 9 | notbid 668 | 
. . . . . . 7
⊢ (𝑧 = 𝑦 → (¬ 𝑧 ∈ 𝑧 ↔ ¬ 𝑦 ∈ 𝑦)) | 
| 11 | 6, 10 | anbi12d 473 | 
. . . . . 6
⊢ (𝑧 = 𝑦 → ((𝑧 ∈ 𝑥 ∧ ¬ 𝑧 ∈ 𝑧) ↔ (𝑦 ∈ 𝑥 ∧ ¬ 𝑦 ∈ 𝑦))) | 
| 12 | 5, 11 | bibi12d 235 | 
. . . . 5
⊢ (𝑧 = 𝑦 → ((𝑧 ∈ 𝑦 ↔ (𝑧 ∈ 𝑥 ∧ ¬ 𝑧 ∈ 𝑧)) ↔ (𝑦 ∈ 𝑦 ↔ (𝑦 ∈ 𝑥 ∧ ¬ 𝑦 ∈ 𝑦)))) | 
| 13 | 12 | spv 1874 | 
. . . 4
⊢
(∀𝑧(𝑧 ∈ 𝑦 ↔ (𝑧 ∈ 𝑥 ∧ ¬ 𝑧 ∈ 𝑧)) → (𝑦 ∈ 𝑦 ↔ (𝑦 ∈ 𝑥 ∧ ¬ 𝑦 ∈ 𝑦))) | 
| 14 |   | pclem6 1385 | 
. . . 4
⊢ ((𝑦 ∈ 𝑦 ↔ (𝑦 ∈ 𝑥 ∧ ¬ 𝑦 ∈ 𝑦)) → ¬ 𝑦 ∈ 𝑥) | 
| 15 | 13, 14 | syl 14 | 
. . 3
⊢
(∀𝑧(𝑧 ∈ 𝑦 ↔ (𝑧 ∈ 𝑥 ∧ ¬ 𝑧 ∈ 𝑧)) → ¬ 𝑦 ∈ 𝑥) | 
| 16 | 4, 15 | eximii 1616 | 
. 2
⊢
∃𝑦 ¬ 𝑦 ∈ 𝑥 | 
| 17 | 1, 16 | mpg 1465 | 
1
⊢  ¬
∃𝑥∀𝑦 𝑦 ∈ 𝑥 |