Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > ch2varv | GIF version |
Description: Version of ch2var 13802 with nonfreeness hypotheses replaced with disjoint variable conditions. (Contributed by BJ, 17-Oct-2019.) |
Ref | Expression |
---|---|
ch2varv.maj | ⊢ ((𝑥 = 𝑦 ∧ 𝑧 = 𝑡) → (𝜑 ↔ 𝜓)) |
ch2varv.min | ⊢ 𝜑 |
Ref | Expression |
---|---|
ch2varv | ⊢ 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1521 | . 2 ⊢ Ⅎ𝑥𝜓 | |
2 | nfv 1521 | . 2 ⊢ Ⅎ𝑧𝜓 | |
3 | ch2varv.maj | . 2 ⊢ ((𝑥 = 𝑦 ∧ 𝑧 = 𝑡) → (𝜑 ↔ 𝜓)) | |
4 | ch2varv.min | . 2 ⊢ 𝜑 | |
5 | 1, 2, 3, 4 | ch2var 13802 | 1 ⊢ 𝜓 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 |
This theorem depends on definitions: df-bi 116 df-nf 1454 |
This theorem is referenced by: sscoll2 14023 |
Copyright terms: Public domain | W3C validator |