| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > ch2varv | GIF version | ||
| Description: Version of ch2var 15423 with nonfreeness hypotheses replaced with disjoint variable conditions. (Contributed by BJ, 17-Oct-2019.) |
| Ref | Expression |
|---|---|
| ch2varv.maj | ⊢ ((𝑥 = 𝑦 ∧ 𝑧 = 𝑡) → (𝜑 ↔ 𝜓)) |
| ch2varv.min | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| ch2varv | ⊢ 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1542 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 2 | nfv 1542 | . 2 ⊢ Ⅎ𝑧𝜓 | |
| 3 | ch2varv.maj | . 2 ⊢ ((𝑥 = 𝑦 ∧ 𝑧 = 𝑡) → (𝜑 ↔ 𝜓)) | |
| 4 | ch2varv.min | . 2 ⊢ 𝜑 | |
| 5 | 1, 2, 3, 4 | ch2var 15423 | 1 ⊢ 𝜓 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 |
| This theorem is referenced by: sscoll2 15644 |
| Copyright terms: Public domain | W3C validator |