Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > ch2var | GIF version |
Description: Implicit substitution of 𝑦 for 𝑥 and 𝑡 for 𝑧 into a theorem. (Contributed by BJ, 17-Oct-2019.) |
Ref | Expression |
---|---|
ch2var.nfx | ⊢ Ⅎ𝑥𝜓 |
ch2var.nfz | ⊢ Ⅎ𝑧𝜓 |
ch2var.maj | ⊢ ((𝑥 = 𝑦 ∧ 𝑧 = 𝑡) → (𝜑 ↔ 𝜓)) |
ch2var.min | ⊢ 𝜑 |
Ref | Expression |
---|---|
ch2var | ⊢ 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ch2var.nfx | . . 3 ⊢ Ⅎ𝑥𝜓 | |
2 | ch2var.nfz | . . 3 ⊢ Ⅎ𝑧𝜓 | |
3 | ch2var.maj | . . . 4 ⊢ ((𝑥 = 𝑦 ∧ 𝑧 = 𝑡) → (𝜑 ↔ 𝜓)) | |
4 | 3 | biimpd 143 | . . 3 ⊢ ((𝑥 = 𝑦 ∧ 𝑧 = 𝑡) → (𝜑 → 𝜓)) |
5 | 1, 2, 4 | 2spim 13657 | . 2 ⊢ (∀𝑧∀𝑥𝜑 → 𝜓) |
6 | ch2var.min | . . 3 ⊢ 𝜑 | |
7 | 6 | ax-gen 1437 | . 2 ⊢ ∀𝑥𝜑 |
8 | 5, 7 | mpg 1439 | 1 ⊢ 𝜓 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∀wal 1341 Ⅎwnf 1448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 df-nf 1449 |
This theorem is referenced by: ch2varv 13659 |
Copyright terms: Public domain | W3C validator |