| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > dcfromnotnotr | GIF version | ||
| Description: The decidability of a proposition 𝜓 follows from a suitable instance of double negation elimination (DNE). Therefore, if we were to introduce DNE as a general principle (without the decidability condition in notnotrdc 844), then we could prove that every proposition is decidable, giving us the classical system of propositional calculus (since DNE itself is classically valid). (Contributed by Adrian Ducourtial, 6-Oct-2025.) | 
| Ref | Expression | 
|---|---|
| dcfromnotnotr.1 | ⊢ (𝜑 ↔ (𝜓 ∨ ¬ 𝜓)) | 
| dcfromnotnotr.2 | ⊢ (¬ ¬ 𝜑 → 𝜑) | 
| Ref | Expression | 
|---|---|
| dcfromnotnotr | ⊢ DECID 𝜓 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nnexmid 851 | . . 3 ⊢ ¬ ¬ (𝜓 ∨ ¬ 𝜓) | |
| 2 | dcfromnotnotr.2 | . . . 4 ⊢ (¬ ¬ 𝜑 → 𝜑) | |
| 3 | dcfromnotnotr.1 | . . . . . 6 ⊢ (𝜑 ↔ (𝜓 ∨ ¬ 𝜓)) | |
| 4 | 3 | notbii 669 | . . . . 5 ⊢ (¬ 𝜑 ↔ ¬ (𝜓 ∨ ¬ 𝜓)) | 
| 5 | 4 | notbii 669 | . . . 4 ⊢ (¬ ¬ 𝜑 ↔ ¬ ¬ (𝜓 ∨ ¬ 𝜓)) | 
| 6 | 2, 5, 3 | 3imtr3i 200 | . . 3 ⊢ (¬ ¬ (𝜓 ∨ ¬ 𝜓) → (𝜓 ∨ ¬ 𝜓)) | 
| 7 | 1, 6 | ax-mp 5 | . 2 ⊢ (𝜓 ∨ ¬ 𝜓) | 
| 8 | df-dc 836 | . 2 ⊢ (DECID 𝜓 ↔ (𝜓 ∨ ¬ 𝜓)) | |
| 9 | 7, 8 | mpbir 146 | 1 ⊢ DECID 𝜓 | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ∨ wo 709 DECID wdc 835 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |