ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dcfromnotnotr GIF version

Theorem dcfromnotnotr 1468
Description: The decidability of a proposition 𝜓 follows from a suitable instance of double negation elimination (DNE). Therefore, if we were to introduce DNE as a general principle (without the decidability condition in notnotrdc 845), then we could prove that every proposition is decidable, giving us the classical system of propositional calculus (since DNE itself is classically valid). (Contributed by Adrian Ducourtial, 6-Oct-2025.)
Hypotheses
Ref Expression
dcfromnotnotr.1 (𝜑 ↔ (𝜓 ∨ ¬ 𝜓))
dcfromnotnotr.2 (¬ ¬ 𝜑𝜑)
Assertion
Ref Expression
dcfromnotnotr DECID 𝜓

Proof of Theorem dcfromnotnotr
StepHypRef Expression
1 nnexmid 852 . . 3 ¬ ¬ (𝜓 ∨ ¬ 𝜓)
2 dcfromnotnotr.2 . . . 4 (¬ ¬ 𝜑𝜑)
3 dcfromnotnotr.1 . . . . . 6 (𝜑 ↔ (𝜓 ∨ ¬ 𝜓))
43notbii 670 . . . . 5 𝜑 ↔ ¬ (𝜓 ∨ ¬ 𝜓))
54notbii 670 . . . 4 (¬ ¬ 𝜑 ↔ ¬ ¬ (𝜓 ∨ ¬ 𝜓))
62, 5, 33imtr3i 200 . . 3 (¬ ¬ (𝜓 ∨ ¬ 𝜓) → (𝜓 ∨ ¬ 𝜓))
71, 6ax-mp 5 . 2 (𝜓 ∨ ¬ 𝜓)
8 df-dc 837 . 2 (DECID 𝜓 ↔ (𝜓 ∨ ¬ 𝜓))
97, 8mpbir 146 1 DECID 𝜓
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105  wo 710  DECID wdc 836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711
This theorem depends on definitions:  df-bi 117  df-dc 837
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator