ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dcfromnotnotr GIF version

Theorem dcfromnotnotr 1458
Description: The decidability of a proposition 𝜓 follows from a suitable instance of double negation elimination (DNE). Therefore, if we were to introduce DNE as a general principle (without the decidability condition in notnotrdc 844), then we could prove that every proposition is decidable, giving us the classical system of propositional calculus (since DNE itself is classically valid). (Contributed by Adrian Ducourtial, 6-Oct-2025.)
Hypotheses
Ref Expression
dcfromnotnotr.1 (𝜑 ↔ (𝜓 ∨ ¬ 𝜓))
dcfromnotnotr.2 (¬ ¬ 𝜑𝜑)
Assertion
Ref Expression
dcfromnotnotr DECID 𝜓

Proof of Theorem dcfromnotnotr
StepHypRef Expression
1 nnexmid 851 . . 3 ¬ ¬ (𝜓 ∨ ¬ 𝜓)
2 dcfromnotnotr.2 . . . 4 (¬ ¬ 𝜑𝜑)
3 dcfromnotnotr.1 . . . . . 6 (𝜑 ↔ (𝜓 ∨ ¬ 𝜓))
43notbii 669 . . . . 5 𝜑 ↔ ¬ (𝜓 ∨ ¬ 𝜓))
54notbii 669 . . . 4 (¬ ¬ 𝜑 ↔ ¬ ¬ (𝜓 ∨ ¬ 𝜓))
62, 5, 33imtr3i 200 . . 3 (¬ ¬ (𝜓 ∨ ¬ 𝜓) → (𝜓 ∨ ¬ 𝜓))
71, 6ax-mp 5 . 2 (𝜓 ∨ ¬ 𝜓)
8 df-dc 836 . 2 (DECID 𝜓 ↔ (𝜓 ∨ ¬ 𝜓))
97, 8mpbir 146 1 DECID 𝜓
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105  wo 709  DECID wdc 835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710
This theorem depends on definitions:  df-bi 117  df-dc 836
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator