| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dcfromnotnotr | GIF version | ||
| Description: The decidability of a proposition 𝜓 follows from a suitable instance of double negation elimination (DNE). Therefore, if we were to introduce DNE as a general principle (without the decidability condition in notnotrdc 847), then we could prove that every proposition is decidable, giving us the classical system of propositional calculus (since DNE itself is classically valid). (Contributed by Adrian Ducourtial, 6-Oct-2025.) |
| Ref | Expression |
|---|---|
| dcfromnotnotr.1 | ⊢ (𝜑 ↔ (𝜓 ∨ ¬ 𝜓)) |
| dcfromnotnotr.2 | ⊢ (¬ ¬ 𝜑 → 𝜑) |
| Ref | Expression |
|---|---|
| dcfromnotnotr | ⊢ DECID 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnexmid 854 | . . 3 ⊢ ¬ ¬ (𝜓 ∨ ¬ 𝜓) | |
| 2 | dcfromnotnotr.2 | . . . 4 ⊢ (¬ ¬ 𝜑 → 𝜑) | |
| 3 | dcfromnotnotr.1 | . . . . . 6 ⊢ (𝜑 ↔ (𝜓 ∨ ¬ 𝜓)) | |
| 4 | 3 | notbii 672 | . . . . 5 ⊢ (¬ 𝜑 ↔ ¬ (𝜓 ∨ ¬ 𝜓)) |
| 5 | 4 | notbii 672 | . . . 4 ⊢ (¬ ¬ 𝜑 ↔ ¬ ¬ (𝜓 ∨ ¬ 𝜓)) |
| 6 | 2, 5, 3 | 3imtr3i 200 | . . 3 ⊢ (¬ ¬ (𝜓 ∨ ¬ 𝜓) → (𝜓 ∨ ¬ 𝜓)) |
| 7 | 1, 6 | ax-mp 5 | . 2 ⊢ (𝜓 ∨ ¬ 𝜓) |
| 8 | df-dc 839 | . 2 ⊢ (DECID 𝜓 ↔ (𝜓 ∨ ¬ 𝜓)) | |
| 9 | 7, 8 | mpbir 146 | 1 ⊢ DECID 𝜓 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ∨ wo 712 DECID wdc 838 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 |
| This theorem depends on definitions: df-bi 117 df-dc 839 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |