| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dcfromnotnotr | GIF version | ||
| Description: The decidability of a proposition 𝜓 follows from a suitable instance of double negation elimination (DNE). Therefore, if we were to introduce DNE as a general principle (without the decidability condition in notnotrdc 845), then we could prove that every proposition is decidable, giving us the classical system of propositional calculus (since DNE itself is classically valid). (Contributed by Adrian Ducourtial, 6-Oct-2025.) |
| Ref | Expression |
|---|---|
| dcfromnotnotr.1 | ⊢ (𝜑 ↔ (𝜓 ∨ ¬ 𝜓)) |
| dcfromnotnotr.2 | ⊢ (¬ ¬ 𝜑 → 𝜑) |
| Ref | Expression |
|---|---|
| dcfromnotnotr | ⊢ DECID 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnexmid 852 | . . 3 ⊢ ¬ ¬ (𝜓 ∨ ¬ 𝜓) | |
| 2 | dcfromnotnotr.2 | . . . 4 ⊢ (¬ ¬ 𝜑 → 𝜑) | |
| 3 | dcfromnotnotr.1 | . . . . . 6 ⊢ (𝜑 ↔ (𝜓 ∨ ¬ 𝜓)) | |
| 4 | 3 | notbii 670 | . . . . 5 ⊢ (¬ 𝜑 ↔ ¬ (𝜓 ∨ ¬ 𝜓)) |
| 5 | 4 | notbii 670 | . . . 4 ⊢ (¬ ¬ 𝜑 ↔ ¬ ¬ (𝜓 ∨ ¬ 𝜓)) |
| 6 | 2, 5, 3 | 3imtr3i 200 | . . 3 ⊢ (¬ ¬ (𝜓 ∨ ¬ 𝜓) → (𝜓 ∨ ¬ 𝜓)) |
| 7 | 1, 6 | ax-mp 5 | . 2 ⊢ (𝜓 ∨ ¬ 𝜓) |
| 8 | df-dc 837 | . 2 ⊢ (DECID 𝜓 ↔ (𝜓 ∨ ¬ 𝜓)) | |
| 9 | 7, 8 | mpbir 146 | 1 ⊢ DECID 𝜓 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ∨ wo 710 DECID wdc 836 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 |
| This theorem depends on definitions: df-bi 117 df-dc 837 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |