![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3imtr3i | GIF version |
Description: A mixed syllogism inference, useful for removing a definition from both sides of an implication. (Contributed by NM, 10-Aug-1994.) |
Ref | Expression |
---|---|
3imtr3.1 | ⊢ (𝜑 → 𝜓) |
3imtr3.2 | ⊢ (𝜑 ↔ 𝜒) |
3imtr3.3 | ⊢ (𝜓 ↔ 𝜃) |
Ref | Expression |
---|---|
3imtr3i | ⊢ (𝜒 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imtr3.2 | . . 3 ⊢ (𝜑 ↔ 𝜒) | |
2 | 3imtr3.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | sylbir 135 | . 2 ⊢ (𝜒 → 𝜓) |
4 | 3imtr3.3 | . 2 ⊢ (𝜓 ↔ 𝜃) | |
5 | 3, 4 | sylib 122 | 1 ⊢ (𝜒 → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: cbv1 1745 cbv1v 1747 moimv 2092 hblem 2285 tfi 4583 smores 6295 idssen 6779 suplocsrlem 7809 bezoutlemle 12011 limcmpted 14171 sincosq3sgn 14288 subctctexmid 14789 dcapnconstALT 14849 |
Copyright terms: Public domain | W3C validator |