ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3imtr3i GIF version

Theorem 3imtr3i 200
Description: A mixed syllogism inference, useful for removing a definition from both sides of an implication. (Contributed by NM, 10-Aug-1994.)
Hypotheses
Ref Expression
3imtr3.1 (𝜑𝜓)
3imtr3.2 (𝜑𝜒)
3imtr3.3 (𝜓𝜃)
Assertion
Ref Expression
3imtr3i (𝜒𝜃)

Proof of Theorem 3imtr3i
StepHypRef Expression
1 3imtr3.2 . . 3 (𝜑𝜒)
2 3imtr3.1 . . 3 (𝜑𝜓)
31, 2sylbir 135 . 2 (𝜒𝜓)
4 3imtr3.3 . 2 (𝜓𝜃)
53, 4sylib 122 1 (𝜒𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  dcfromnotnotr  1490  dcfromcon  1491  dcfrompeirce  1492  cbv1  1791  cbv1v  1793  moimv  2144  hblem  2337  tfi  4674  smores  6438  idssen  6928  suplocsrlem  7995  bezoutlemle  12529  limcmpted  15337  sincosq3sgn  15502  fsumdvdsmul  15665  subctctexmid  16366  dcapnconstALT  16430
  Copyright terms: Public domain W3C validator