ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3imtr3i GIF version

Theorem 3imtr3i 200
Description: A mixed syllogism inference, useful for removing a definition from both sides of an implication. (Contributed by NM, 10-Aug-1994.)
Hypotheses
Ref Expression
3imtr3.1 (𝜑𝜓)
3imtr3.2 (𝜑𝜒)
3imtr3.3 (𝜓𝜃)
Assertion
Ref Expression
3imtr3i (𝜒𝜃)

Proof of Theorem 3imtr3i
StepHypRef Expression
1 3imtr3.2 . . 3 (𝜑𝜒)
2 3imtr3.1 . . 3 (𝜑𝜓)
31, 2sylbir 135 . 2 (𝜒𝜓)
4 3imtr3.3 . 2 (𝜓𝜃)
53, 4sylib 122 1 (𝜒𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  dcfromnotnotr  1466  dcfromcon  1467  dcfrompeirce  1468  cbv1  1767  cbv1v  1769  moimv  2119  hblem  2312  tfi  4629  smores  6377  idssen  6867  suplocsrlem  7920  bezoutlemle  12300  limcmpted  15106  sincosq3sgn  15271  fsumdvdsmul  15434  subctctexmid  15899  dcapnconstALT  15963
  Copyright terms: Public domain W3C validator