ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3imtr3i GIF version

Theorem 3imtr3i 200
Description: A mixed syllogism inference, useful for removing a definition from both sides of an implication. (Contributed by NM, 10-Aug-1994.)
Hypotheses
Ref Expression
3imtr3.1 (𝜑𝜓)
3imtr3.2 (𝜑𝜒)
3imtr3.3 (𝜓𝜃)
Assertion
Ref Expression
3imtr3i (𝜒𝜃)

Proof of Theorem 3imtr3i
StepHypRef Expression
1 3imtr3.2 . . 3 (𝜑𝜒)
2 3imtr3.1 . . 3 (𝜑𝜓)
31, 2sylbir 135 . 2 (𝜒𝜓)
4 3imtr3.3 . 2 (𝜓𝜃)
53, 4sylib 122 1 (𝜒𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  dcfromnotnotr  1467  dcfromcon  1468  dcfrompeirce  1469  cbv1  1768  cbv1v  1770  moimv  2120  hblem  2313  tfi  4630  smores  6378  idssen  6868  suplocsrlem  7921  bezoutlemle  12329  limcmpted  15135  sincosq3sgn  15300  fsumdvdsmul  15463  subctctexmid  15937  dcapnconstALT  16001
  Copyright terms: Public domain W3C validator