| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpisyl | GIF version | ||
| Description: A syllogism combined with a modus ponens inference. (Contributed by Alan Sare, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| mpisyl.1 | ⊢ (𝜑 → 𝜓) |
| mpisyl.2 | ⊢ 𝜒 |
| mpisyl.3 | ⊢ (𝜓 → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| mpisyl | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpisyl.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | mpisyl.2 | . . 3 ⊢ 𝜒 | |
| 3 | mpisyl.3 | . . 3 ⊢ (𝜓 → (𝜒 → 𝜃)) | |
| 4 | 2, 3 | mpi 15 | . 2 ⊢ (𝜓 → 𝜃) |
| 5 | 1, 4 | syl 14 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: ceqsex 2838 reusv1 4549 iotaexab 5297 fliftcnv 5925 fliftfun 5926 tfrlemibfn 6480 tfr1onlembfn 6496 tfrcllembfn 6509 cnvct 6970 ordiso 7211 exmidomni 7317 djudoml 7409 djudomr 7410 uzsinds 10674 fimaxq 11057 ltoddhalfle 12412 phicl2 12744 strsetsid 13073 txdis1cn 14960 xmeter 15118 2lgslem1 15778 usgredg2v 16030 subctctexmid 16395 |
| Copyright terms: Public domain | W3C validator |