ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpisyl GIF version

Theorem mpisyl 1434
Description: A syllogism combined with a modus ponens inference. (Contributed by Alan Sare, 25-Jul-2011.)
Hypotheses
Ref Expression
mpisyl.1 (𝜑𝜓)
mpisyl.2 𝜒
mpisyl.3 (𝜓 → (𝜒𝜃))
Assertion
Ref Expression
mpisyl (𝜑𝜃)

Proof of Theorem mpisyl
StepHypRef Expression
1 mpisyl.1 . 2 (𝜑𝜓)
2 mpisyl.2 . . 3 𝜒
3 mpisyl.3 . . 3 (𝜓 → (𝜒𝜃))
42, 3mpi 15 . 2 (𝜓𝜃)
51, 4syl 14 1 (𝜑𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  ceqsex  2764  reusv1  4436  fliftcnv  5763  fliftfun  5764  tfrlemibfn  6296  tfr1onlembfn  6312  tfrcllembfn  6325  cnvct  6775  ordiso  7001  exmidomni  7106  djudoml  7175  djudomr  7176  uzsinds  10377  fimaxq  10740  ltoddhalfle  11830  phicl2  12146  strsetsid  12427  txdis1cn  12928  xmeter  13086  subctctexmid  13891
  Copyright terms: Public domain W3C validator