Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpisyl | GIF version |
Description: A syllogism combined with a modus ponens inference. (Contributed by Alan Sare, 25-Jul-2011.) |
Ref | Expression |
---|---|
mpisyl.1 | ⊢ (𝜑 → 𝜓) |
mpisyl.2 | ⊢ 𝜒 |
mpisyl.3 | ⊢ (𝜓 → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
mpisyl | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpisyl.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | mpisyl.2 | . . 3 ⊢ 𝜒 | |
3 | mpisyl.3 | . . 3 ⊢ (𝜓 → (𝜒 → 𝜃)) | |
4 | 2, 3 | mpi 15 | . 2 ⊢ (𝜓 → 𝜃) |
5 | 1, 4 | syl 14 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: ceqsex 2768 reusv1 4443 fliftcnv 5774 fliftfun 5775 tfrlemibfn 6307 tfr1onlembfn 6323 tfrcllembfn 6336 cnvct 6787 ordiso 7013 exmidomni 7118 djudoml 7196 djudomr 7197 uzsinds 10398 fimaxq 10762 ltoddhalfle 11852 phicl2 12168 strsetsid 12449 txdis1cn 13072 xmeter 13230 subctctexmid 14034 |
Copyright terms: Public domain | W3C validator |