Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpisyl | GIF version |
Description: A syllogism combined with a modus ponens inference. (Contributed by Alan Sare, 25-Jul-2011.) |
Ref | Expression |
---|---|
mpisyl.1 | ⊢ (𝜑 → 𝜓) |
mpisyl.2 | ⊢ 𝜒 |
mpisyl.3 | ⊢ (𝜓 → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
mpisyl | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpisyl.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | mpisyl.2 | . . 3 ⊢ 𝜒 | |
3 | mpisyl.3 | . . 3 ⊢ (𝜓 → (𝜒 → 𝜃)) | |
4 | 2, 3 | mpi 15 | . 2 ⊢ (𝜓 → 𝜃) |
5 | 1, 4 | syl 14 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: ceqsex 2764 reusv1 4436 fliftcnv 5763 fliftfun 5764 tfrlemibfn 6296 tfr1onlembfn 6312 tfrcllembfn 6325 cnvct 6775 ordiso 7001 exmidomni 7106 djudoml 7175 djudomr 7176 uzsinds 10377 fimaxq 10740 ltoddhalfle 11830 phicl2 12146 strsetsid 12427 txdis1cn 12928 xmeter 13086 subctctexmid 13891 |
Copyright terms: Public domain | W3C validator |