| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpisyl | GIF version | ||
| Description: A syllogism combined with a modus ponens inference. (Contributed by Alan Sare, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| mpisyl.1 | ⊢ (𝜑 → 𝜓) |
| mpisyl.2 | ⊢ 𝜒 |
| mpisyl.3 | ⊢ (𝜓 → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| mpisyl | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpisyl.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | mpisyl.2 | . . 3 ⊢ 𝜒 | |
| 3 | mpisyl.3 | . . 3 ⊢ (𝜓 → (𝜒 → 𝜃)) | |
| 4 | 2, 3 | mpi 15 | . 2 ⊢ (𝜓 → 𝜃) |
| 5 | 1, 4 | syl 14 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: ceqsex 2818 reusv1 4526 iotaexab 5273 fliftcnv 5892 fliftfun 5893 tfrlemibfn 6444 tfr1onlembfn 6460 tfrcllembfn 6473 cnvct 6932 ordiso 7171 exmidomni 7277 djudoml 7369 djudomr 7370 uzsinds 10633 fimaxq 11016 ltoddhalfle 12370 phicl2 12702 strsetsid 13031 txdis1cn 14917 xmeter 15075 2lgslem1 15735 usgredg2v 15987 subctctexmid 16277 |
| Copyright terms: Public domain | W3C validator |