ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpisyl GIF version

Theorem mpisyl 1381
Description: A syllogism combined with a modus ponens inference. (Contributed by Alan Sare, 25-Jul-2011.)
Hypotheses
Ref Expression
mpisyl.1 (𝜑𝜓)
mpisyl.2 𝜒
mpisyl.3 (𝜓 → (𝜒𝜃))
Assertion
Ref Expression
mpisyl (𝜑𝜃)

Proof of Theorem mpisyl
StepHypRef Expression
1 mpisyl.1 . 2 (𝜑𝜓)
2 mpisyl.2 . . 3 𝜒
3 mpisyl.3 . . 3 (𝜓 → (𝜒𝜃))
42, 3mpi 15 . 2 (𝜓𝜃)
51, 4syl 14 1 (𝜑𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7
This theorem is referenced by:  ceqsex  2658  reusv1  4293  fliftcnv  5588  fliftfun  5589  tfrlemibfn  6107  tfr1onlembfn  6123  tfrcllembfn  6136  cnvct  6580  ordiso  6783  exmidomni  6852  uzsinds  9902  fimaxq  10289  ltoddhalfle  11225  phicl2  11522  strsetsid  11581
  Copyright terms: Public domain W3C validator