![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpisyl | GIF version |
Description: A syllogism combined with a modus ponens inference. (Contributed by Alan Sare, 25-Jul-2011.) |
Ref | Expression |
---|---|
mpisyl.1 | ⊢ (𝜑 → 𝜓) |
mpisyl.2 | ⊢ 𝜒 |
mpisyl.3 | ⊢ (𝜓 → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
mpisyl | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpisyl.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | mpisyl.2 | . . 3 ⊢ 𝜒 | |
3 | mpisyl.3 | . . 3 ⊢ (𝜓 → (𝜒 → 𝜃)) | |
4 | 2, 3 | mpi 15 | . 2 ⊢ (𝜓 → 𝜃) |
5 | 1, 4 | syl 14 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: ceqsex 2776 reusv1 4459 fliftcnv 5796 fliftfun 5797 tfrlemibfn 6329 tfr1onlembfn 6345 tfrcllembfn 6358 cnvct 6809 ordiso 7035 exmidomni 7140 djudoml 7218 djudomr 7219 uzsinds 10442 fimaxq 10807 ltoddhalfle 11898 phicl2 12214 strsetsid 12495 txdis1cn 13781 xmeter 13939 subctctexmid 14753 |
Copyright terms: Public domain | W3C validator |