| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpisyl | GIF version | ||
| Description: A syllogism combined with a modus ponens inference. (Contributed by Alan Sare, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| mpisyl.1 | ⊢ (𝜑 → 𝜓) |
| mpisyl.2 | ⊢ 𝜒 |
| mpisyl.3 | ⊢ (𝜓 → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| mpisyl | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpisyl.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | mpisyl.2 | . . 3 ⊢ 𝜒 | |
| 3 | mpisyl.3 | . . 3 ⊢ (𝜓 → (𝜒 → 𝜃)) | |
| 4 | 2, 3 | mpi 15 | . 2 ⊢ (𝜓 → 𝜃) |
| 5 | 1, 4 | syl 14 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: ceqsex 2811 reusv1 4509 iotaexab 5255 fliftcnv 5871 fliftfun 5872 tfrlemibfn 6421 tfr1onlembfn 6437 tfrcllembfn 6450 cnvct 6908 ordiso 7145 exmidomni 7251 djudoml 7338 djudomr 7339 uzsinds 10596 fimaxq 10979 ltoddhalfle 12248 phicl2 12580 strsetsid 12909 txdis1cn 14794 xmeter 14952 2lgslem1 15612 subctctexmid 16011 |
| Copyright terms: Public domain | W3C validator |