| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpisyl | GIF version | ||
| Description: A syllogism combined with a modus ponens inference. (Contributed by Alan Sare, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| mpisyl.1 | ⊢ (𝜑 → 𝜓) |
| mpisyl.2 | ⊢ 𝜒 |
| mpisyl.3 | ⊢ (𝜓 → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| mpisyl | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpisyl.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | mpisyl.2 | . . 3 ⊢ 𝜒 | |
| 3 | mpisyl.3 | . . 3 ⊢ (𝜓 → (𝜒 → 𝜃)) | |
| 4 | 2, 3 | mpi 15 | . 2 ⊢ (𝜓 → 𝜃) |
| 5 | 1, 4 | syl 14 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: ceqsex 2801 reusv1 4494 iotaexab 5238 fliftcnv 5845 fliftfun 5846 tfrlemibfn 6395 tfr1onlembfn 6411 tfrcllembfn 6424 cnvct 6877 ordiso 7111 exmidomni 7217 djudoml 7302 djudomr 7303 uzsinds 10553 fimaxq 10936 ltoddhalfle 12075 phicl2 12407 strsetsid 12736 txdis1cn 14598 xmeter 14756 2lgslem1 15416 subctctexmid 15731 |
| Copyright terms: Public domain | W3C validator |