| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > notnotrdc | GIF version | ||
| Description: Double negation elimination for a decidable proposition. The converse, notnot 630, holds for all propositions, not just decidable ones. This is Theorem *2.14 of [WhiteheadRussell] p. 102, but with a decidability condition added. (Contributed by Jim Kingdon, 11-Mar-2018.) | 
| Ref | Expression | 
|---|---|
| notnotrdc | ⊢ (DECID 𝜑 → (¬ ¬ 𝜑 → 𝜑)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-dc 836 | . . 3 ⊢ (DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑)) | |
| 2 | orcom 729 | . . 3 ⊢ ((𝜑 ∨ ¬ 𝜑) ↔ (¬ 𝜑 ∨ 𝜑)) | |
| 3 | 1, 2 | bitri 184 | . 2 ⊢ (DECID 𝜑 ↔ (¬ 𝜑 ∨ 𝜑)) | 
| 4 | pm2.53 723 | . 2 ⊢ ((¬ 𝜑 ∨ 𝜑) → (¬ ¬ 𝜑 → 𝜑)) | |
| 5 | 3, 4 | sylbi 121 | 1 ⊢ (DECID 𝜑 → (¬ ¬ 𝜑 → 𝜑)) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 709 DECID wdc 835 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 | 
| This theorem is referenced by: dcstab 845 notnotbdc 873 condandc 882 pm2.13dc 886 pm2.54dc 892 mkvprop 7224 netap 7321 bitsfzo 12119 | 
| Copyright terms: Public domain | W3C validator |