ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  notnotrdc GIF version

Theorem notnotrdc 848
Description: Double negation elimination for a decidable proposition. The converse, notnot 632, holds for all propositions, not just decidable ones. This is Theorem *2.14 of [WhiteheadRussell] p. 102, but with a decidability condition added. (Contributed by Jim Kingdon, 11-Mar-2018.)
Assertion
Ref Expression
notnotrdc (DECID 𝜑 → (¬ ¬ 𝜑𝜑))

Proof of Theorem notnotrdc
StepHypRef Expression
1 df-dc 840 . . 3 (DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑))
2 orcom 733 . . 3 ((𝜑 ∨ ¬ 𝜑) ↔ (¬ 𝜑𝜑))
31, 2bitri 184 . 2 (DECID 𝜑 ↔ (¬ 𝜑𝜑))
4 pm2.53 727 . 2 ((¬ 𝜑𝜑) → (¬ ¬ 𝜑𝜑))
53, 4sylbi 121 1 (DECID 𝜑 → (¬ ¬ 𝜑𝜑))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wo 713  DECID wdc 839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 618  ax-io 714
This theorem depends on definitions:  df-bi 117  df-dc 840
This theorem is referenced by:  dcstab  849  notnotbdc  877  condandc  886  pm2.13dc  890  pm2.54dc  896  mkvprop  7321  netap  7436  bitsfzo  12461
  Copyright terms: Public domain W3C validator