![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > imbi12i | GIF version |
Description: Join two logical equivalences to form equivalence of implications. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
imbi12i.1 | ⊢ (𝜑 ↔ 𝜓) |
imbi12i.2 | ⊢ (𝜒 ↔ 𝜃) |
Ref | Expression |
---|---|
imbi12i | ⊢ ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbi12i.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
2 | 1 | imbi2i 224 | . 2 ⊢ ((𝜑 → 𝜒) ↔ (𝜑 → 𝜃)) |
3 | imbi12i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
4 | 3 | imbi1i 236 | . 2 ⊢ ((𝜑 → 𝜃) ↔ (𝜓 → 𝜃)) |
5 | 2, 4 | bitri 182 | 1 ⊢ ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 103 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: nfbii 1407 sbi2v 1820 sbim 1875 sb8mo 1962 cbvmo 1988 necon4ddc 2327 raleqbii 2390 rmo5 2582 cbvrmo 2589 ss2ab 3089 snsssn 3605 trint 3951 ssextss 4047 ordsoexmid 4378 zfregfr 4389 tfi 4397 peano2 4410 peano5 4413 relop 4586 dmcosseq 4704 cotr 4813 issref 4814 cnvsym 4815 intasym 4816 intirr 4818 codir 4820 qfto 4821 cnvpom 4973 cnvsom 4974 funcnvuni 5083 poxp 5997 infmoti 6721 dfinfre 8415 bezoutlembi 11268 algcvgblem 11305 isprm2 11373 ss1oel2o 11843 |
Copyright terms: Public domain | W3C validator |