| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imbi12i | GIF version | ||
| Description: Join two logical equivalences to form equivalence of implications. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| imbi12i.1 | ⊢ (𝜑 ↔ 𝜓) |
| imbi12i.2 | ⊢ (𝜒 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| imbi12i | ⊢ ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbi12i.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
| 2 | 1 | imbi2i 226 | . 2 ⊢ ((𝜑 → 𝜒) ↔ (𝜑 → 𝜃)) |
| 3 | imbi12i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 4 | 3 | imbi1i 238 | . 2 ⊢ ((𝜑 → 𝜃) ↔ (𝜓 → 𝜃)) |
| 5 | 2, 4 | bitri 184 | 1 ⊢ ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: stdcn 849 dcfromcon 1469 dcfrompeirce 1470 nfbii 1497 sbi2v 1917 sbim 1982 sb8mo 2069 cbvmo 2095 necon4ddc 2449 raleqbii 2519 rmo5 2727 cbvrmo 2738 ss2ab 3265 snsssn 3810 trint 4168 ssextss 4277 ordsoexmid 4623 zfregfr 4635 tfi 4643 peano2 4656 peano5 4659 relop 4841 dmcosseq 4964 cotr 5078 issref 5079 cnvsym 5080 intasym 5081 intirr 5083 codir 5085 qfto 5086 cnvpom 5239 cnvsom 5240 funcnvuni 5357 poxp 6336 infmoti 7151 dfinfre 9059 bezoutlembi 12411 algcvgblem 12456 isprm2 12524 ntreq0 14689 ss1oel2o 16097 |
| Copyright terms: Public domain | W3C validator |