| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imbi12i | GIF version | ||
| Description: Join two logical equivalences to form equivalence of implications. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| imbi12i.1 | ⊢ (𝜑 ↔ 𝜓) |
| imbi12i.2 | ⊢ (𝜒 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| imbi12i | ⊢ ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbi12i.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
| 2 | 1 | imbi2i 226 | . 2 ⊢ ((𝜑 → 𝜒) ↔ (𝜑 → 𝜃)) |
| 3 | imbi12i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 4 | 3 | imbi1i 238 | . 2 ⊢ ((𝜑 → 𝜃) ↔ (𝜓 → 𝜃)) |
| 5 | 2, 4 | bitri 184 | 1 ⊢ ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: stdcn 848 dcfromcon 1467 dcfrompeirce 1468 nfbii 1495 sbi2v 1915 sbim 1980 sb8mo 2067 cbvmo 2093 necon4ddc 2447 raleqbii 2517 rmo5 2725 cbvrmo 2736 ss2ab 3260 snsssn 3801 trint 4156 ssextss 4263 ordsoexmid 4609 zfregfr 4621 tfi 4629 peano2 4642 peano5 4645 relop 4827 dmcosseq 4949 cotr 5063 issref 5064 cnvsym 5065 intasym 5066 intirr 5068 codir 5070 qfto 5071 cnvpom 5224 cnvsom 5225 funcnvuni 5342 poxp 6317 infmoti 7129 dfinfre 9028 bezoutlembi 12297 algcvgblem 12342 isprm2 12410 ntreq0 14575 ss1oel2o 15890 |
| Copyright terms: Public domain | W3C validator |