| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imbi12i | GIF version | ||
| Description: Join two logical equivalences to form equivalence of implications. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| imbi12i.1 | ⊢ (𝜑 ↔ 𝜓) |
| imbi12i.2 | ⊢ (𝜒 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| imbi12i | ⊢ ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbi12i.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
| 2 | 1 | imbi2i 226 | . 2 ⊢ ((𝜑 → 𝜒) ↔ (𝜑 → 𝜃)) |
| 3 | imbi12i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 4 | 3 | imbi1i 238 | . 2 ⊢ ((𝜑 → 𝜃) ↔ (𝜓 → 𝜃)) |
| 5 | 2, 4 | bitri 184 | 1 ⊢ ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: stdcn 852 dcfromcon 1491 dcfrompeirce 1492 nfbii 1519 sbi2v 1939 sbim 2004 sb8mo 2091 cbvmo 2117 necon4ddc 2472 raleqbii 2542 rmo5 2752 cbvrmo 2764 ss2ab 3292 snsssn 3838 trint 4196 ssextss 4305 ordsoexmid 4653 zfregfr 4665 tfi 4673 peano2 4686 peano5 4689 relop 4871 dmcosseq 4995 cotr 5109 issref 5110 cnvsym 5111 intasym 5112 intirr 5114 codir 5116 qfto 5117 cnvpom 5270 cnvsom 5271 funcnvuni 5389 poxp 6376 infmoti 7191 dfinfre 9099 bezoutlembi 12521 algcvgblem 12566 isprm2 12634 ntreq0 14800 ss1oel2o 16313 |
| Copyright terms: Public domain | W3C validator |