| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imbi12i | GIF version | ||
| Description: Join two logical equivalences to form equivalence of implications. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| imbi12i.1 | ⊢ (𝜑 ↔ 𝜓) |
| imbi12i.2 | ⊢ (𝜒 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| imbi12i | ⊢ ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbi12i.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
| 2 | 1 | imbi2i 226 | . 2 ⊢ ((𝜑 → 𝜒) ↔ (𝜑 → 𝜃)) |
| 3 | imbi12i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 4 | 3 | imbi1i 238 | . 2 ⊢ ((𝜑 → 𝜃) ↔ (𝜓 → 𝜃)) |
| 5 | 2, 4 | bitri 184 | 1 ⊢ ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: stdcn 849 dcfromcon 1468 dcfrompeirce 1469 nfbii 1496 sbi2v 1916 sbim 1981 sb8mo 2068 cbvmo 2094 necon4ddc 2448 raleqbii 2518 rmo5 2726 cbvrmo 2737 ss2ab 3261 snsssn 3802 trint 4157 ssextss 4264 ordsoexmid 4610 zfregfr 4622 tfi 4630 peano2 4643 peano5 4646 relop 4828 dmcosseq 4950 cotr 5064 issref 5065 cnvsym 5066 intasym 5067 intirr 5069 codir 5071 qfto 5072 cnvpom 5225 cnvsom 5226 funcnvuni 5343 poxp 6318 infmoti 7130 dfinfre 9029 bezoutlembi 12326 algcvgblem 12371 isprm2 12439 ntreq0 14604 ss1oel2o 15928 |
| Copyright terms: Public domain | W3C validator |