| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imbi12i | GIF version | ||
| Description: Join two logical equivalences to form equivalence of implications. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| imbi12i.1 | ⊢ (𝜑 ↔ 𝜓) |
| imbi12i.2 | ⊢ (𝜒 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| imbi12i | ⊢ ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbi12i.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
| 2 | 1 | imbi2i 226 | . 2 ⊢ ((𝜑 → 𝜒) ↔ (𝜑 → 𝜃)) |
| 3 | imbi12i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 4 | 3 | imbi1i 238 | . 2 ⊢ ((𝜑 → 𝜃) ↔ (𝜓 → 𝜃)) |
| 5 | 2, 4 | bitri 184 | 1 ⊢ ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: stdcn 848 dcfromcon 1459 dcfrompeirce 1460 nfbii 1487 sbi2v 1907 sbim 1972 sb8mo 2059 cbvmo 2085 necon4ddc 2439 raleqbii 2509 rmo5 2717 cbvrmo 2728 ss2ab 3252 snsssn 3792 trint 4147 ssextss 4254 ordsoexmid 4599 zfregfr 4611 tfi 4619 peano2 4632 peano5 4635 relop 4817 dmcosseq 4938 cotr 5052 issref 5053 cnvsym 5054 intasym 5055 intirr 5057 codir 5059 qfto 5060 cnvpom 5213 cnvsom 5214 funcnvuni 5328 poxp 6299 infmoti 7103 dfinfre 9000 bezoutlembi 12197 algcvgblem 12242 isprm2 12310 ntreq0 14452 ss1oel2o 15722 |
| Copyright terms: Public domain | W3C validator |