ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dcstab GIF version

Theorem dcstab 846
Description: Decidability implies stability. The converse need not hold. (Contributed by David A. Wheeler, 13-Aug-2018.)
Assertion
Ref Expression
dcstab (DECID 𝜑STAB 𝜑)

Proof of Theorem dcstab
StepHypRef Expression
1 notnotrdc 845 . 2 (DECID 𝜑 → (¬ ¬ 𝜑𝜑))
2 df-stab 833 . 2 (STAB 𝜑 ↔ (¬ ¬ 𝜑𝜑))
31, 2sylibr 134 1 (DECID 𝜑STAB 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  STAB wstab 832  DECID wdc 836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 616  ax-io 711
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837
This theorem is referenced by:  stdcndc  847  stdcndcOLD  848  condc  855  imandc  891  sbthlemi3  7073
  Copyright terms: Public domain W3C validator