| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > dcstab | GIF version | ||
| Description: Decidability implies stability. The converse need not hold. (Contributed by David A. Wheeler, 13-Aug-2018.) | 
| Ref | Expression | 
|---|---|
| dcstab | ⊢ (DECID 𝜑 → STAB 𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | notnotrdc 844 | . 2 ⊢ (DECID 𝜑 → (¬ ¬ 𝜑 → 𝜑)) | |
| 2 | df-stab 832 | . 2 ⊢ (STAB 𝜑 ↔ (¬ ¬ 𝜑 → 𝜑)) | |
| 3 | 1, 2 | sylibr 134 | 1 ⊢ (DECID 𝜑 → STAB 𝜑) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 STAB wstab 831 DECID wdc 835 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 | 
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 | 
| This theorem is referenced by: stdcndc 846 stdcndcOLD 847 condc 854 imandc 890 sbthlemi3 7025 | 
| Copyright terms: Public domain | W3C validator |