![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dcstab | GIF version |
Description: Decidability implies stability. The converse need not hold. (Contributed by David A. Wheeler, 13-Aug-2018.) |
Ref | Expression |
---|---|
dcstab | ⊢ (DECID 𝜑 → STAB 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnotrdc 843 | . 2 ⊢ (DECID 𝜑 → (¬ ¬ 𝜑 → 𝜑)) | |
2 | df-stab 831 | . 2 ⊢ (STAB 𝜑 ↔ (¬ ¬ 𝜑 → 𝜑)) | |
3 | 1, 2 | sylibr 134 | 1 ⊢ (DECID 𝜑 → STAB 𝜑) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 STAB wstab 830 DECID wdc 834 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 615 ax-io 709 |
This theorem depends on definitions: df-bi 117 df-stab 831 df-dc 835 |
This theorem is referenced by: stdcndc 845 stdcndcOLD 846 condc 853 imandc 889 sbthlemi3 6960 |
Copyright terms: Public domain | W3C validator |