ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dcstab GIF version

Theorem dcstab 834
Description: Decidability implies stability. The converse need not hold. (Contributed by David A. Wheeler, 13-Aug-2018.)
Assertion
Ref Expression
dcstab (DECID 𝜑STAB 𝜑)

Proof of Theorem dcstab
StepHypRef Expression
1 notnotrdc 833 . 2 (DECID 𝜑 → (¬ ¬ 𝜑𝜑))
2 df-stab 821 . 2 (STAB 𝜑 ↔ (¬ ¬ 𝜑𝜑))
31, 2sylibr 133 1 (DECID 𝜑STAB 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  STAB wstab 820  DECID wdc 824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in2 605  ax-io 699
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825
This theorem is referenced by:  stdcndc  835  stdcndcOLD  836  condc  843  imandc  879  sbthlemi3  6924
  Copyright terms: Public domain W3C validator