ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbthlemi3 GIF version

Theorem sbthlemi3 6855
Description: Lemma for isbth 6863. (Contributed by NM, 22-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1 𝐴 ∈ V
sbthlem.2 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
Assertion
Ref Expression
sbthlemi3 ((EXMID ∧ ran 𝑔𝐴) → (𝑔 “ (𝐵 ∖ (𝑓 𝐷))) = (𝐴 𝐷))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝑓   𝑥,𝑔
Allowed substitution hints:   𝐴(𝑓,𝑔)   𝐵(𝑓,𝑔)   𝐷(𝑓,𝑔)

Proof of Theorem sbthlemi3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sbthlem.1 . . . . . . 7 𝐴 ∈ V
2 sbthlem.2 . . . . . . 7 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
31, 2sbthlem2 6854 . . . . . 6 (ran 𝑔𝐴 → (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ 𝐷)
41, 2sbthlem1 6853 . . . . . 6 𝐷 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))
53, 4jctil 310 . . . . 5 (ran 𝑔𝐴 → ( 𝐷 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ∧ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ 𝐷))
6 eqss 3117 . . . . 5 ( 𝐷 = (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ↔ ( 𝐷 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ∧ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ 𝐷))
75, 6sylibr 133 . . . 4 (ran 𝑔𝐴 𝐷 = (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))))
87difeq2d 3199 . . 3 (ran 𝑔𝐴 → (𝐴 𝐷) = (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))
98adantl 275 . 2 ((EXMID ∧ ran 𝑔𝐴) → (𝐴 𝐷) = (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))
10 imassrn 4900 . . . . 5 (𝑔 “ (𝐵 ∖ (𝑓 𝐷))) ⊆ ran 𝑔
11 sstr2 3109 . . . . 5 ((𝑔 “ (𝐵 ∖ (𝑓 𝐷))) ⊆ ran 𝑔 → (ran 𝑔𝐴 → (𝑔 “ (𝐵 ∖ (𝑓 𝐷))) ⊆ 𝐴))
1210, 11ax-mp 5 . . . 4 (ran 𝑔𝐴 → (𝑔 “ (𝐵 ∖ (𝑓 𝐷))) ⊆ 𝐴)
13 exmidexmid 4128 . . . . . . 7 (EXMIDDECID 𝑦 ∈ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))
14 dcstab 830 . . . . . . 7 (DECID 𝑦 ∈ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))) → STAB 𝑦 ∈ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))
1513, 14syl 14 . . . . . 6 (EXMIDSTAB 𝑦 ∈ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))
1615alrimiv 1847 . . . . 5 (EXMID → ∀𝑦STAB 𝑦 ∈ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))
17 dfss4st 3314 . . . . 5 (∀𝑦STAB 𝑦 ∈ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))) → ((𝑔 “ (𝐵 ∖ (𝑓 𝐷))) ⊆ 𝐴 ↔ (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))) = (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))))
1816, 17syl 14 . . . 4 (EXMID → ((𝑔 “ (𝐵 ∖ (𝑓 𝐷))) ⊆ 𝐴 ↔ (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))) = (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))))
1912, 18syl5ib 153 . . 3 (EXMID → (ran 𝑔𝐴 → (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))) = (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))))
2019imp 123 . 2 ((EXMID ∧ ran 𝑔𝐴) → (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))) = (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))
219, 20eqtr2d 2174 1 ((EXMID ∧ ran 𝑔𝐴) → (𝑔 “ (𝐵 ∖ (𝑓 𝐷))) = (𝐴 𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  STAB wstab 816  DECID wdc 820  wal 1330   = wceq 1332  wcel 1481  {cab 2126  Vcvv 2689  cdif 3073  wss 3076   cuni 3744  EXMIDwem 4126  ran crn 4548  cima 4550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139
This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-exmid 4127  df-xp 4553  df-cnv 4555  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560
This theorem is referenced by:  sbthlemi4  6856  sbthlemi5  6857
  Copyright terms: Public domain W3C validator