Step | Hyp | Ref
| Expression |
1 | | sbthlem.1 |
. . . . . . 7
⊢ 𝐴 ∈ V |
2 | | sbthlem.2 |
. . . . . . 7
⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} |
3 | 1, 2 | sbthlem2 6935 |
. . . . . 6
⊢ (ran
𝑔 ⊆ 𝐴 → (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷)))) ⊆ ∪ 𝐷) |
4 | 1, 2 | sbthlem1 6934 |
. . . . . 6
⊢ ∪ 𝐷
⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷)))) |
5 | 3, 4 | jctil 310 |
. . . . 5
⊢ (ran
𝑔 ⊆ 𝐴 → (∪ 𝐷 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷)))) ∧ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷)))) ⊆ ∪ 𝐷)) |
6 | | eqss 3162 |
. . . . 5
⊢ (∪ 𝐷 =
(𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷)))) ↔ (∪ 𝐷
⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷)))) ∧ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷)))) ⊆ ∪ 𝐷)) |
7 | 5, 6 | sylibr 133 |
. . . 4
⊢ (ran
𝑔 ⊆ 𝐴 → ∪ 𝐷 = (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷))))) |
8 | 7 | difeq2d 3245 |
. . 3
⊢ (ran
𝑔 ⊆ 𝐴 → (𝐴 ∖ ∪ 𝐷) = (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷)))))) |
9 | 8 | adantl 275 |
. 2
⊢
((EXMID ∧ ran 𝑔 ⊆ 𝐴) → (𝐴 ∖ ∪ 𝐷) = (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷)))))) |
10 | | imassrn 4964 |
. . . . 5
⊢ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷))) ⊆ ran 𝑔 |
11 | | sstr2 3154 |
. . . . 5
⊢ ((𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷))) ⊆ ran 𝑔 → (ran 𝑔 ⊆ 𝐴 → (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷))) ⊆ 𝐴)) |
12 | 10, 11 | ax-mp 5 |
. . . 4
⊢ (ran
𝑔 ⊆ 𝐴 → (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷))) ⊆ 𝐴) |
13 | | exmidexmid 4182 |
. . . . . . 7
⊢
(EXMID → DECID 𝑦 ∈ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷)))) |
14 | | dcstab 839 |
. . . . . . 7
⊢
(DECID 𝑦 ∈ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷))) → STAB
𝑦 ∈ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷)))) |
15 | 13, 14 | syl 14 |
. . . . . 6
⊢
(EXMID → STAB 𝑦 ∈ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷)))) |
16 | 15 | alrimiv 1867 |
. . . . 5
⊢
(EXMID → ∀𝑦STAB 𝑦 ∈ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷)))) |
17 | | dfss4st 3360 |
. . . . 5
⊢
(∀𝑦STAB 𝑦 ∈ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷))) → ((𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷))) ⊆ 𝐴 ↔ (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷))))) = (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷))))) |
18 | 16, 17 | syl 14 |
. . . 4
⊢
(EXMID → ((𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷))) ⊆ 𝐴 ↔ (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷))))) = (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷))))) |
19 | 12, 18 | syl5ib 153 |
. . 3
⊢
(EXMID → (ran 𝑔 ⊆ 𝐴 → (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷))))) = (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷))))) |
20 | 19 | imp 123 |
. 2
⊢
((EXMID ∧ ran 𝑔 ⊆ 𝐴) → (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷))))) = (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷)))) |
21 | 9, 20 | eqtr2d 2204 |
1
⊢
((EXMID ∧ ran 𝑔 ⊆ 𝐴) → (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷))) = (𝐴 ∖ ∪ 𝐷)) |