ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbthlemi3 GIF version

Theorem sbthlemi3 7043
Description: Lemma for isbth 7051. (Contributed by NM, 22-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1 𝐴 ∈ V
sbthlem.2 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
Assertion
Ref Expression
sbthlemi3 ((EXMID ∧ ran 𝑔𝐴) → (𝑔 “ (𝐵 ∖ (𝑓 𝐷))) = (𝐴 𝐷))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝑓   𝑥,𝑔
Allowed substitution hints:   𝐴(𝑓,𝑔)   𝐵(𝑓,𝑔)   𝐷(𝑓,𝑔)

Proof of Theorem sbthlemi3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sbthlem.1 . . . . . . 7 𝐴 ∈ V
2 sbthlem.2 . . . . . . 7 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
31, 2sbthlem2 7042 . . . . . 6 (ran 𝑔𝐴 → (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ 𝐷)
41, 2sbthlem1 7041 . . . . . 6 𝐷 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))
53, 4jctil 312 . . . . 5 (ran 𝑔𝐴 → ( 𝐷 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ∧ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ 𝐷))
6 eqss 3207 . . . . 5 ( 𝐷 = (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ↔ ( 𝐷 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ∧ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ 𝐷))
75, 6sylibr 134 . . . 4 (ran 𝑔𝐴 𝐷 = (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))))
87difeq2d 3290 . . 3 (ran 𝑔𝐴 → (𝐴 𝐷) = (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))
98adantl 277 . 2 ((EXMID ∧ ran 𝑔𝐴) → (𝐴 𝐷) = (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))
10 imassrn 5030 . . . . 5 (𝑔 “ (𝐵 ∖ (𝑓 𝐷))) ⊆ ran 𝑔
11 sstr2 3199 . . . . 5 ((𝑔 “ (𝐵 ∖ (𝑓 𝐷))) ⊆ ran 𝑔 → (ran 𝑔𝐴 → (𝑔 “ (𝐵 ∖ (𝑓 𝐷))) ⊆ 𝐴))
1210, 11ax-mp 5 . . . 4 (ran 𝑔𝐴 → (𝑔 “ (𝐵 ∖ (𝑓 𝐷))) ⊆ 𝐴)
13 exmidexmid 4239 . . . . . . 7 (EXMIDDECID 𝑦 ∈ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))
14 dcstab 845 . . . . . . 7 (DECID 𝑦 ∈ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))) → STAB 𝑦 ∈ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))
1513, 14syl 14 . . . . . 6 (EXMIDSTAB 𝑦 ∈ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))
1615alrimiv 1896 . . . . 5 (EXMID → ∀𝑦STAB 𝑦 ∈ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))
17 dfss4st 3405 . . . . 5 (∀𝑦STAB 𝑦 ∈ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))) → ((𝑔 “ (𝐵 ∖ (𝑓 𝐷))) ⊆ 𝐴 ↔ (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))) = (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))))
1816, 17syl 14 . . . 4 (EXMID → ((𝑔 “ (𝐵 ∖ (𝑓 𝐷))) ⊆ 𝐴 ↔ (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))) = (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))))
1912, 18imbitrid 154 . . 3 (EXMID → (ran 𝑔𝐴 → (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))) = (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))))
2019imp 124 . 2 ((EXMID ∧ ran 𝑔𝐴) → (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))) = (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))
219, 20eqtr2d 2238 1 ((EXMID ∧ ran 𝑔𝐴) → (𝑔 “ (𝐵 ∖ (𝑓 𝐷))) = (𝐴 𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  STAB wstab 831  DECID wdc 835  wal 1370   = wceq 1372  wcel 2175  {cab 2190  Vcvv 2771  cdif 3162  wss 3165   cuni 3849  EXMIDwem 4237  ran crn 4674  cima 4676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-exmid 4238  df-xp 4679  df-cnv 4681  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686
This theorem is referenced by:  sbthlemi4  7044  sbthlemi5  7045
  Copyright terms: Public domain W3C validator