ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbthlemi3 GIF version

Theorem sbthlemi3 7082
Description: Lemma for isbth 7090. (Contributed by NM, 22-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1 𝐴 ∈ V
sbthlem.2 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
Assertion
Ref Expression
sbthlemi3 ((EXMID ∧ ran 𝑔𝐴) → (𝑔 “ (𝐵 ∖ (𝑓 𝐷))) = (𝐴 𝐷))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝑓   𝑥,𝑔
Allowed substitution hints:   𝐴(𝑓,𝑔)   𝐵(𝑓,𝑔)   𝐷(𝑓,𝑔)

Proof of Theorem sbthlemi3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sbthlem.1 . . . . . . 7 𝐴 ∈ V
2 sbthlem.2 . . . . . . 7 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
31, 2sbthlem2 7081 . . . . . 6 (ran 𝑔𝐴 → (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ 𝐷)
41, 2sbthlem1 7080 . . . . . 6 𝐷 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))
53, 4jctil 312 . . . . 5 (ran 𝑔𝐴 → ( 𝐷 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ∧ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ 𝐷))
6 eqss 3212 . . . . 5 ( 𝐷 = (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ↔ ( 𝐷 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ∧ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ 𝐷))
75, 6sylibr 134 . . . 4 (ran 𝑔𝐴 𝐷 = (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))))
87difeq2d 3295 . . 3 (ran 𝑔𝐴 → (𝐴 𝐷) = (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))
98adantl 277 . 2 ((EXMID ∧ ran 𝑔𝐴) → (𝐴 𝐷) = (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))
10 imassrn 5047 . . . . 5 (𝑔 “ (𝐵 ∖ (𝑓 𝐷))) ⊆ ran 𝑔
11 sstr2 3204 . . . . 5 ((𝑔 “ (𝐵 ∖ (𝑓 𝐷))) ⊆ ran 𝑔 → (ran 𝑔𝐴 → (𝑔 “ (𝐵 ∖ (𝑓 𝐷))) ⊆ 𝐴))
1210, 11ax-mp 5 . . . 4 (ran 𝑔𝐴 → (𝑔 “ (𝐵 ∖ (𝑓 𝐷))) ⊆ 𝐴)
13 exmidexmid 4251 . . . . . . 7 (EXMIDDECID 𝑦 ∈ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))
14 dcstab 846 . . . . . . 7 (DECID 𝑦 ∈ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))) → STAB 𝑦 ∈ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))
1513, 14syl 14 . . . . . 6 (EXMIDSTAB 𝑦 ∈ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))
1615alrimiv 1898 . . . . 5 (EXMID → ∀𝑦STAB 𝑦 ∈ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))
17 dfss4st 3410 . . . . 5 (∀𝑦STAB 𝑦 ∈ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))) → ((𝑔 “ (𝐵 ∖ (𝑓 𝐷))) ⊆ 𝐴 ↔ (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))) = (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))))
1816, 17syl 14 . . . 4 (EXMID → ((𝑔 “ (𝐵 ∖ (𝑓 𝐷))) ⊆ 𝐴 ↔ (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))) = (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))))
1912, 18imbitrid 154 . . 3 (EXMID → (ran 𝑔𝐴 → (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))) = (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))))
2019imp 124 . 2 ((EXMID ∧ ran 𝑔𝐴) → (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))) = (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))
219, 20eqtr2d 2240 1 ((EXMID ∧ ran 𝑔𝐴) → (𝑔 “ (𝐵 ∖ (𝑓 𝐷))) = (𝐴 𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  STAB wstab 832  DECID wdc 836  wal 1371   = wceq 1373  wcel 2177  {cab 2192  Vcvv 2773  cdif 3167  wss 3170   cuni 3859  EXMIDwem 4249  ran crn 4689  cima 4691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-br 4055  df-opab 4117  df-exmid 4250  df-xp 4694  df-cnv 4696  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701
This theorem is referenced by:  sbthlemi4  7083  sbthlemi5  7084
  Copyright terms: Public domain W3C validator