ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbthlemi3 GIF version

Theorem sbthlemi3 6924
Description: Lemma for isbth 6932. (Contributed by NM, 22-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1 𝐴 ∈ V
sbthlem.2 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
Assertion
Ref Expression
sbthlemi3 ((EXMID ∧ ran 𝑔𝐴) → (𝑔 “ (𝐵 ∖ (𝑓 𝐷))) = (𝐴 𝐷))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝑓   𝑥,𝑔
Allowed substitution hints:   𝐴(𝑓,𝑔)   𝐵(𝑓,𝑔)   𝐷(𝑓,𝑔)

Proof of Theorem sbthlemi3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sbthlem.1 . . . . . . 7 𝐴 ∈ V
2 sbthlem.2 . . . . . . 7 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
31, 2sbthlem2 6923 . . . . . 6 (ran 𝑔𝐴 → (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ 𝐷)
41, 2sbthlem1 6922 . . . . . 6 𝐷 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))
53, 4jctil 310 . . . . 5 (ran 𝑔𝐴 → ( 𝐷 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ∧ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ 𝐷))
6 eqss 3157 . . . . 5 ( 𝐷 = (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ↔ ( 𝐷 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ∧ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ 𝐷))
75, 6sylibr 133 . . . 4 (ran 𝑔𝐴 𝐷 = (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))))
87difeq2d 3240 . . 3 (ran 𝑔𝐴 → (𝐴 𝐷) = (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))
98adantl 275 . 2 ((EXMID ∧ ran 𝑔𝐴) → (𝐴 𝐷) = (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))))
10 imassrn 4957 . . . . 5 (𝑔 “ (𝐵 ∖ (𝑓 𝐷))) ⊆ ran 𝑔
11 sstr2 3149 . . . . 5 ((𝑔 “ (𝐵 ∖ (𝑓 𝐷))) ⊆ ran 𝑔 → (ran 𝑔𝐴 → (𝑔 “ (𝐵 ∖ (𝑓 𝐷))) ⊆ 𝐴))
1210, 11ax-mp 5 . . . 4 (ran 𝑔𝐴 → (𝑔 “ (𝐵 ∖ (𝑓 𝐷))) ⊆ 𝐴)
13 exmidexmid 4175 . . . . . . 7 (EXMIDDECID 𝑦 ∈ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))
14 dcstab 834 . . . . . . 7 (DECID 𝑦 ∈ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))) → STAB 𝑦 ∈ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))
1513, 14syl 14 . . . . . 6 (EXMIDSTAB 𝑦 ∈ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))
1615alrimiv 1862 . . . . 5 (EXMID → ∀𝑦STAB 𝑦 ∈ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))
17 dfss4st 3355 . . . . 5 (∀𝑦STAB 𝑦 ∈ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))) → ((𝑔 “ (𝐵 ∖ (𝑓 𝐷))) ⊆ 𝐴 ↔ (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))) = (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))))
1816, 17syl 14 . . . 4 (EXMID → ((𝑔 “ (𝐵 ∖ (𝑓 𝐷))) ⊆ 𝐴 ↔ (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))) = (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))))
1912, 18syl5ib 153 . . 3 (EXMID → (ran 𝑔𝐴 → (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))) = (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))))
2019imp 123 . 2 ((EXMID ∧ ran 𝑔𝐴) → (𝐴 ∖ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))) = (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))
219, 20eqtr2d 2199 1 ((EXMID ∧ ran 𝑔𝐴) → (𝑔 “ (𝐵 ∖ (𝑓 𝐷))) = (𝐴 𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  STAB wstab 820  DECID wdc 824  wal 1341   = wceq 1343  wcel 2136  {cab 2151  Vcvv 2726  cdif 3113  wss 3116   cuni 3789  EXMIDwem 4173  ran crn 4605  cima 4607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-exmid 4174  df-xp 4610  df-cnv 4612  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617
This theorem is referenced by:  sbthlemi4  6925  sbthlemi5  6926
  Copyright terms: Public domain W3C validator