| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-disj | GIF version | ||
| Description: A collection of classes 𝐵(𝑥) is disjoint when for each element 𝑦, it is in 𝐵(𝑥) for at most one 𝑥. (Contributed by Mario Carneiro, 14-Nov-2016.) (Revised by NM, 16-Jun-2017.) |
| Ref | Expression |
|---|---|
| df-disj | ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vx | . . 3 setvar 𝑥 | |
| 2 | cA | . . 3 class 𝐴 | |
| 3 | cB | . . 3 class 𝐵 | |
| 4 | 1, 2, 3 | wdisj 4010 | . 2 wff Disj 𝑥 ∈ 𝐴 𝐵 |
| 5 | vy | . . . . . 6 setvar 𝑦 | |
| 6 | 5 | cv 1363 | . . . . 5 class 𝑦 |
| 7 | 6, 3 | wcel 2167 | . . . 4 wff 𝑦 ∈ 𝐵 |
| 8 | 7, 1, 2 | wrmo 2478 | . . 3 wff ∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 |
| 9 | 8, 5 | wal 1362 | . 2 wff ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 |
| 10 | 4, 9 | wb 105 | 1 wff (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) |
| Colors of variables: wff set class |
| This definition is referenced by: dfdisj2 4012 disjss2 4013 cbvdisj 4020 nfdisj1 4023 disjnim 4024 disjiun 4028 disjxp1 6294 |
| Copyright terms: Public domain | W3C validator |