| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > disjss2 | GIF version | ||
| Description: If each element of a collection is contained in a disjoint collection, the original collection is also disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) |
| Ref | Expression |
|---|---|
| disjss2 | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → (Disj 𝑥 ∈ 𝐴 𝐶 → Disj 𝑥 ∈ 𝐴 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3186 | . . . . 5 ⊢ (𝐵 ⊆ 𝐶 → (𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶)) | |
| 2 | 1 | ralimi 2568 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶)) |
| 3 | rmoim 2973 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶) → (∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 → ∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵)) | |
| 4 | 2, 3 | syl 14 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → (∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 → ∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵)) |
| 5 | 4 | alimdv 1901 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → (∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 → ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵)) |
| 6 | df-disj 4021 | . 2 ⊢ (Disj 𝑥 ∈ 𝐴 𝐶 ↔ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐶) | |
| 7 | df-disj 4021 | . 2 ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | |
| 8 | 5, 6, 7 | 3imtr4g 205 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → (Disj 𝑥 ∈ 𝐴 𝐶 → Disj 𝑥 ∈ 𝐴 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1370 ∈ wcel 2175 ∀wral 2483 ∃*wrmo 2486 ⊆ wss 3165 Disj wdisj 4020 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-ral 2488 df-rmo 2491 df-in 3171 df-ss 3178 df-disj 4021 |
| This theorem is referenced by: disjeq2 4024 0disj 4040 |
| Copyright terms: Public domain | W3C validator |