ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disjss2 GIF version

Theorem disjss2 3855
Description: If each element of a collection is contained in a disjoint collection, the original collection is also disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
disjss2 (∀𝑥𝐴 𝐵𝐶 → (Disj 𝑥𝐴 𝐶Disj 𝑥𝐴 𝐵))

Proof of Theorem disjss2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssel 3041 . . . . 5 (𝐵𝐶 → (𝑦𝐵𝑦𝐶))
21ralimi 2454 . . . 4 (∀𝑥𝐴 𝐵𝐶 → ∀𝑥𝐴 (𝑦𝐵𝑦𝐶))
3 rmoim 2838 . . . 4 (∀𝑥𝐴 (𝑦𝐵𝑦𝐶) → (∃*𝑥𝐴 𝑦𝐶 → ∃*𝑥𝐴 𝑦𝐵))
42, 3syl 14 . . 3 (∀𝑥𝐴 𝐵𝐶 → (∃*𝑥𝐴 𝑦𝐶 → ∃*𝑥𝐴 𝑦𝐵))
54alimdv 1818 . 2 (∀𝑥𝐴 𝐵𝐶 → (∀𝑦∃*𝑥𝐴 𝑦𝐶 → ∀𝑦∃*𝑥𝐴 𝑦𝐵))
6 df-disj 3853 . 2 (Disj 𝑥𝐴 𝐶 ↔ ∀𝑦∃*𝑥𝐴 𝑦𝐶)
7 df-disj 3853 . 2 (Disj 𝑥𝐴 𝐵 ↔ ∀𝑦∃*𝑥𝐴 𝑦𝐵)
85, 6, 73imtr4g 204 1 (∀𝑥𝐴 𝐵𝐶 → (Disj 𝑥𝐴 𝐶Disj 𝑥𝐴 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1297  wcel 1448  wral 2375  ∃*wrmo 2378  wss 3021  Disj wdisj 3852
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082
This theorem depends on definitions:  df-bi 116  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-ral 2380  df-rmo 2383  df-in 3027  df-ss 3034  df-disj 3853
This theorem is referenced by:  disjeq2  3856  0disj  3872
  Copyright terms: Public domain W3C validator