HomeHome Intuitionistic Logic Explorer
Theorem List (p. 40 of 140)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 3901-4000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremdfiunv2 3901* Define double indexed union. (Contributed by FL, 6-Nov-2013.)
𝑥𝐴 𝑦𝐵 𝐶 = {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝑧𝐶}
 
Theoremcbviun 3902* Rule used to change the bound variables in an indexed union, with the substitution specified implicitly by the hypothesis. (Contributed by NM, 26-Mar-2006.) (Revised by Andrew Salmon, 25-Jul-2011.)
𝑦𝐵    &   𝑥𝐶    &   (𝑥 = 𝑦𝐵 = 𝐶)        𝑥𝐴 𝐵 = 𝑦𝐴 𝐶
 
Theoremcbviin 3903* Change bound variables in an indexed intersection. (Contributed by Jeff Hankins, 26-Aug-2009.) (Revised by Mario Carneiro, 14-Oct-2016.)
𝑦𝐵    &   𝑥𝐶    &   (𝑥 = 𝑦𝐵 = 𝐶)        𝑥𝐴 𝐵 = 𝑦𝐴 𝐶
 
Theoremcbviunv 3904* Rule used to change the bound variables in an indexed union, with the substitution specified implicitly by the hypothesis. (Contributed by NM, 15-Sep-2003.)
(𝑥 = 𝑦𝐵 = 𝐶)        𝑥𝐴 𝐵 = 𝑦𝐴 𝐶
 
Theoremcbviinv 3905* Change bound variables in an indexed intersection. (Contributed by Jeff Hankins, 26-Aug-2009.)
(𝑥 = 𝑦𝐵 = 𝐶)        𝑥𝐴 𝐵 = 𝑦𝐴 𝐶
 
Theoremiunss 3906* Subset theorem for an indexed union. (Contributed by NM, 13-Sep-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
( 𝑥𝐴 𝐵𝐶 ↔ ∀𝑥𝐴 𝐵𝐶)
 
Theoremssiun 3907* Subset implication for an indexed union. (Contributed by NM, 3-Sep-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
(∃𝑥𝐴 𝐶𝐵𝐶 𝑥𝐴 𝐵)
 
Theoremssiun2 3908 Identity law for subset of an indexed union. (Contributed by NM, 12-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
(𝑥𝐴𝐵 𝑥𝐴 𝐵)
 
Theoremssiun2s 3909* Subset relationship for an indexed union. (Contributed by NM, 26-Oct-2003.)
(𝑥 = 𝐶𝐵 = 𝐷)       (𝐶𝐴𝐷 𝑥𝐴 𝐵)
 
Theoremiunss2 3910* A subclass condition on the members of two indexed classes 𝐶(𝑥) and 𝐷(𝑦) that implies a subclass relation on their indexed unions. Generalization of Proposition 8.6 of [TakeutiZaring] p. 59. Compare uniss2 3819. (Contributed by NM, 9-Dec-2004.)
(∀𝑥𝐴𝑦𝐵 𝐶𝐷 𝑥𝐴 𝐶 𝑦𝐵 𝐷)
 
Theoremiunab 3911* The indexed union of a class abstraction. (Contributed by NM, 27-Dec-2004.)
𝑥𝐴 {𝑦𝜑} = {𝑦 ∣ ∃𝑥𝐴 𝜑}
 
Theoremiunrab 3912* The indexed union of a restricted class abstraction. (Contributed by NM, 3-Jan-2004.) (Proof shortened by Mario Carneiro, 14-Nov-2016.)
𝑥𝐴 {𝑦𝐵𝜑} = {𝑦𝐵 ∣ ∃𝑥𝐴 𝜑}
 
Theoremiunxdif2 3913* Indexed union with a class difference as its index. (Contributed by NM, 10-Dec-2004.)
(𝑥 = 𝑦𝐶 = 𝐷)       (∀𝑥𝐴𝑦 ∈ (𝐴𝐵)𝐶𝐷 𝑦 ∈ (𝐴𝐵)𝐷 = 𝑥𝐴 𝐶)
 
Theoremssiinf 3914 Subset theorem for an indexed intersection. (Contributed by FL, 15-Oct-2012.) (Proof shortened by Mario Carneiro, 14-Oct-2016.)
𝑥𝐶       (𝐶 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝐶𝐵)
 
Theoremssiin 3915* Subset theorem for an indexed intersection. (Contributed by NM, 15-Oct-2003.)
(𝐶 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝐶𝐵)
 
Theoremiinss 3916* Subset implication for an indexed intersection. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
(∃𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵𝐶)
 
Theoremiinss2 3917 An indexed intersection is included in any of its members. (Contributed by FL, 15-Oct-2012.)
(𝑥𝐴 𝑥𝐴 𝐵𝐵)
 
Theoremuniiun 3918* Class union in terms of indexed union. Definition in [Stoll] p. 43. (Contributed by NM, 28-Jun-1998.)
𝐴 = 𝑥𝐴 𝑥
 
Theoremintiin 3919* Class intersection in terms of indexed intersection. Definition in [Stoll] p. 44. (Contributed by NM, 28-Jun-1998.)
𝐴 = 𝑥𝐴 𝑥
 
Theoremiunid 3920* An indexed union of singletons recovers the index set. (Contributed by NM, 6-Sep-2005.)
𝑥𝐴 {𝑥} = 𝐴
 
Theoremiun0 3921 An indexed union of the empty set is empty. (Contributed by NM, 26-Mar-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
𝑥𝐴 ∅ = ∅
 
Theorem0iun 3922 An empty indexed union is empty. (Contributed by NM, 4-Dec-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
𝑥 ∈ ∅ 𝐴 = ∅
 
Theorem0iin 3923 An empty indexed intersection is the universal class. (Contributed by NM, 20-Oct-2005.)
𝑥 ∈ ∅ 𝐴 = V
 
Theoremviin 3924* Indexed intersection with a universal index class. (Contributed by NM, 11-Sep-2008.)
𝑥 ∈ V 𝐴 = {𝑦 ∣ ∀𝑥 𝑦𝐴}
 
Theoremiunn0m 3925* There is an inhabited class in an indexed collection 𝐵(𝑥) iff the indexed union of them is inhabited. (Contributed by Jim Kingdon, 16-Aug-2018.)
(∃𝑥𝐴𝑦 𝑦𝐵 ↔ ∃𝑦 𝑦 𝑥𝐴 𝐵)
 
Theoremiinab 3926* Indexed intersection of a class builder. (Contributed by NM, 6-Dec-2011.)
𝑥𝐴 {𝑦𝜑} = {𝑦 ∣ ∀𝑥𝐴 𝜑}
 
Theoremiinrabm 3927* Indexed intersection of a restricted class builder. (Contributed by Jim Kingdon, 16-Aug-2018.)
(∃𝑥 𝑥𝐴 𝑥𝐴 {𝑦𝐵𝜑} = {𝑦𝐵 ∣ ∀𝑥𝐴 𝜑})
 
Theoremiunin2 3928* Indexed union of intersection. Generalization of half of theorem "Distributive laws" in [Enderton] p. 30. Use uniiun 3918 to recover Enderton's theorem. (Contributed by NM, 26-Mar-2004.)
𝑥𝐴 (𝐵𝐶) = (𝐵 𝑥𝐴 𝐶)
 
Theoremiunin1 3929* Indexed union of intersection. Generalization of half of theorem "Distributive laws" in [Enderton] p. 30. Use uniiun 3918 to recover Enderton's theorem. (Contributed by Mario Carneiro, 30-Aug-2015.)
𝑥𝐴 (𝐶𝐵) = ( 𝑥𝐴 𝐶𝐵)
 
Theoremiundif2ss 3930* Indexed union of class difference. Compare to theorem "De Morgan's laws" in [Enderton] p. 31. (Contributed by Jim Kingdon, 17-Aug-2018.)
𝑥𝐴 (𝐵𝐶) ⊆ (𝐵 𝑥𝐴 𝐶)
 
Theorem2iunin 3931* Rearrange indexed unions over intersection. (Contributed by NM, 18-Dec-2008.)
𝑥𝐴 𝑦𝐵 (𝐶𝐷) = ( 𝑥𝐴 𝐶 𝑦𝐵 𝐷)
 
Theoremiindif2m 3932* Indexed intersection of class difference. Compare to Theorem "De Morgan's laws" in [Enderton] p. 31. (Contributed by Jim Kingdon, 17-Aug-2018.)
(∃𝑥 𝑥𝐴 𝑥𝐴 (𝐵𝐶) = (𝐵 𝑥𝐴 𝐶))
 
Theoremiinin2m 3933* Indexed intersection of intersection. Compare to Theorem "Distributive laws" in [Enderton] p. 30. (Contributed by Jim Kingdon, 17-Aug-2018.)
(∃𝑥 𝑥𝐴 𝑥𝐴 (𝐵𝐶) = (𝐵 𝑥𝐴 𝐶))
 
Theoremiinin1m 3934* Indexed intersection of intersection. Compare to Theorem "Distributive laws" in [Enderton] p. 30. (Contributed by Jim Kingdon, 17-Aug-2018.)
(∃𝑥 𝑥𝐴 𝑥𝐴 (𝐶𝐵) = ( 𝑥𝐴 𝐶𝐵))
 
Theoremelriin 3935* Elementhood in a relative intersection. (Contributed by Mario Carneiro, 30-Dec-2016.)
(𝐵 ∈ (𝐴 𝑥𝑋 𝑆) ↔ (𝐵𝐴 ∧ ∀𝑥𝑋 𝐵𝑆))
 
Theoremriin0 3936* Relative intersection of an empty family. (Contributed by Stefan O'Rear, 3-Apr-2015.)
(𝑋 = ∅ → (𝐴 𝑥𝑋 𝑆) = 𝐴)
 
Theoremriinm 3937* Relative intersection of an inhabited family. (Contributed by Jim Kingdon, 19-Aug-2018.)
((∀𝑥𝑋 𝑆𝐴 ∧ ∃𝑥 𝑥𝑋) → (𝐴 𝑥𝑋 𝑆) = 𝑥𝑋 𝑆)
 
Theoremiinxsng 3938* A singleton index picks out an instance of an indexed intersection's argument. (Contributed by NM, 15-Jan-2012.) (Proof shortened by Mario Carneiro, 17-Nov-2016.)
(𝑥 = 𝐴𝐵 = 𝐶)       (𝐴𝑉 𝑥 ∈ {𝐴}𝐵 = 𝐶)
 
Theoremiinxprg 3939* Indexed intersection with an unordered pair index. (Contributed by NM, 25-Jan-2012.)
(𝑥 = 𝐴𝐶 = 𝐷)    &   (𝑥 = 𝐵𝐶 = 𝐸)       ((𝐴𝑉𝐵𝑊) → 𝑥 ∈ {𝐴, 𝐵}𝐶 = (𝐷𝐸))
 
Theoremiunxsng 3940* A singleton index picks out an instance of an indexed union's argument. (Contributed by Mario Carneiro, 25-Jun-2016.)
(𝑥 = 𝐴𝐵 = 𝐶)       (𝐴𝑉 𝑥 ∈ {𝐴}𝐵 = 𝐶)
 
Theoremiunxsn 3941* A singleton index picks out an instance of an indexed union's argument. (Contributed by NM, 26-Mar-2004.) (Proof shortened by Mario Carneiro, 25-Jun-2016.)
𝐴 ∈ V    &   (𝑥 = 𝐴𝐵 = 𝐶)        𝑥 ∈ {𝐴}𝐵 = 𝐶
 
Theoremiunxsngf 3942* A singleton index picks out an instance of an indexed union's argument. (Contributed by Mario Carneiro, 25-Jun-2016.) (Revised by Thierry Arnoux, 2-May-2020.)
𝑥𝐶    &   (𝑥 = 𝐴𝐵 = 𝐶)       (𝐴𝑉 𝑥 ∈ {𝐴}𝐵 = 𝐶)
 
Theoremiunun 3943 Separate a union in an indexed union. (Contributed by NM, 27-Dec-2004.) (Proof shortened by Mario Carneiro, 17-Nov-2016.)
𝑥𝐴 (𝐵𝐶) = ( 𝑥𝐴 𝐵 𝑥𝐴 𝐶)
 
Theoremiunxun 3944 Separate a union in the index of an indexed union. (Contributed by NM, 26-Mar-2004.) (Proof shortened by Mario Carneiro, 17-Nov-2016.)
𝑥 ∈ (𝐴𝐵)𝐶 = ( 𝑥𝐴 𝐶 𝑥𝐵 𝐶)
 
Theoremiunxprg 3945* A pair index picks out two instances of an indexed union's argument. (Contributed by Alexander van der Vekens, 2-Feb-2018.)
(𝑥 = 𝐴𝐶 = 𝐷)    &   (𝑥 = 𝐵𝐶 = 𝐸)       ((𝐴𝑉𝐵𝑊) → 𝑥 ∈ {𝐴, 𝐵}𝐶 = (𝐷𝐸))
 
Theoremiunxiun 3946* Separate an indexed union in the index of an indexed union. (Contributed by Mario Carneiro, 5-Dec-2016.)
𝑥 𝑦𝐴 𝐵𝐶 = 𝑦𝐴 𝑥𝐵 𝐶
 
Theoremiinuniss 3947* A relationship involving union and indexed intersection. Exercise 23 of [Enderton] p. 33 but with equality changed to subset. (Contributed by Jim Kingdon, 19-Aug-2018.)
(𝐴 𝐵) ⊆ 𝑥𝐵 (𝐴𝑥)
 
Theoremiununir 3948* A relationship involving union and indexed union. Exercise 25 of [Enderton] p. 33 but with biconditional changed to implication. (Contributed by Jim Kingdon, 19-Aug-2018.)
((𝐴 𝐵) = 𝑥𝐵 (𝐴𝑥) → (𝐵 = ∅ → 𝐴 = ∅))
 
Theoremsspwuni 3949 Subclass relationship for power class and union. (Contributed by NM, 18-Jul-2006.)
(𝐴 ⊆ 𝒫 𝐵 𝐴𝐵)
 
Theorempwssb 3950* Two ways to express a collection of subclasses. (Contributed by NM, 19-Jul-2006.)
(𝐴 ⊆ 𝒫 𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)
 
Theoremelpwpw 3951 Characterization of the elements of a double power class: they are exactly the sets whose union is included in that class. (Contributed by BJ, 29-Apr-2021.)
(𝐴 ∈ 𝒫 𝒫 𝐵 ↔ (𝐴 ∈ V ∧ 𝐴𝐵))
 
Theorempwpwab 3952* The double power class written as a class abstraction: the class of sets whose union is included in the given class. (Contributed by BJ, 29-Apr-2021.)
𝒫 𝒫 𝐴 = {𝑥 𝑥𝐴}
 
Theorempwpwssunieq 3953* The class of sets whose union is equal to a given class is included in the double power class of that class. (Contributed by BJ, 29-Apr-2021.)
{𝑥 𝑥 = 𝐴} ⊆ 𝒫 𝒫 𝐴
 
Theoremelpwuni 3954 Relationship for power class and union. (Contributed by NM, 18-Jul-2006.)
(𝐵𝐴 → (𝐴 ⊆ 𝒫 𝐵 𝐴 = 𝐵))
 
Theoremiinpw 3955* The power class of an intersection in terms of indexed intersection. Exercise 24(a) of [Enderton] p. 33. (Contributed by NM, 29-Nov-2003.)
𝒫 𝐴 = 𝑥𝐴 𝒫 𝑥
 
Theoremiunpwss 3956* Inclusion of an indexed union of a power class in the power class of the union of its index. Part of Exercise 24(b) of [Enderton] p. 33. (Contributed by NM, 25-Nov-2003.)
𝑥𝐴 𝒫 𝑥 ⊆ 𝒫 𝐴
 
Theoremrintm 3957* Relative intersection of an inhabited class. (Contributed by Jim Kingdon, 19-Aug-2018.)
((𝑋 ⊆ 𝒫 𝐴 ∧ ∃𝑥 𝑥𝑋) → (𝐴 𝑋) = 𝑋)
 
2.1.21  Disjointness
 
Syntaxwdisj 3958 Extend wff notation to include the statement that a family of classes 𝐵(𝑥), for 𝑥𝐴, is a disjoint family.
wff Disj 𝑥𝐴 𝐵
 
Definitiondf-disj 3959* A collection of classes 𝐵(𝑥) is disjoint when for each element 𝑦, it is in 𝐵(𝑥) for at most one 𝑥. (Contributed by Mario Carneiro, 14-Nov-2016.) (Revised by NM, 16-Jun-2017.)
(Disj 𝑥𝐴 𝐵 ↔ ∀𝑦∃*𝑥𝐴 𝑦𝐵)
 
Theoremdfdisj2 3960* Alternate definition for disjoint classes. (Contributed by NM, 17-Jun-2017.)
(Disj 𝑥𝐴 𝐵 ↔ ∀𝑦∃*𝑥(𝑥𝐴𝑦𝐵))
 
Theoremdisjss2 3961 If each element of a collection is contained in a disjoint collection, the original collection is also disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.)
(∀𝑥𝐴 𝐵𝐶 → (Disj 𝑥𝐴 𝐶Disj 𝑥𝐴 𝐵))
 
Theoremdisjeq2 3962 Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.)
(∀𝑥𝐴 𝐵 = 𝐶 → (Disj 𝑥𝐴 𝐵Disj 𝑥𝐴 𝐶))
 
Theoremdisjeq2dv 3963* Equality deduction for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.)
((𝜑𝑥𝐴) → 𝐵 = 𝐶)       (𝜑 → (Disj 𝑥𝐴 𝐵Disj 𝑥𝐴 𝐶))
 
Theoremdisjss1 3964* A subset of a disjoint collection is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.)
(𝐴𝐵 → (Disj 𝑥𝐵 𝐶Disj 𝑥𝐴 𝐶))
 
Theoremdisjeq1 3965* Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.)
(𝐴 = 𝐵 → (Disj 𝑥𝐴 𝐶Disj 𝑥𝐵 𝐶))
 
Theoremdisjeq1d 3966* Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.)
(𝜑𝐴 = 𝐵)       (𝜑 → (Disj 𝑥𝐴 𝐶Disj 𝑥𝐵 𝐶))
 
Theoremdisjeq12d 3967* Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐷)       (𝜑 → (Disj 𝑥𝐴 𝐶Disj 𝑥𝐵 𝐷))
 
Theoremcbvdisj 3968* Change bound variables in a disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.)
𝑦𝐵    &   𝑥𝐶    &   (𝑥 = 𝑦𝐵 = 𝐶)       (Disj 𝑥𝐴 𝐵Disj 𝑦𝐴 𝐶)
 
Theoremcbvdisjv 3969* Change bound variables in a disjoint collection. (Contributed by Mario Carneiro, 11-Dec-2016.)
(𝑥 = 𝑦𝐵 = 𝐶)       (Disj 𝑥𝐴 𝐵Disj 𝑦𝐴 𝐶)
 
Theoremnfdisjv 3970* Bound-variable hypothesis builder for disjoint collection. (Contributed by Jim Kingdon, 19-Aug-2018.)
𝑦𝐴    &   𝑦𝐵       𝑦Disj 𝑥𝐴 𝐵
 
Theoremnfdisj1 3971 Bound-variable hypothesis builder for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.)
𝑥Disj 𝑥𝐴 𝐵
 
Theoremdisjnim 3972* If a collection 𝐵(𝑖) for 𝑖𝐴 is disjoint, then pairs are disjoint. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by Jim Kingdon, 6-Oct-2022.)
(𝑖 = 𝑗𝐵 = 𝐶)       (Disj 𝑖𝐴 𝐵 → ∀𝑖𝐴𝑗𝐴 (𝑖𝑗 → (𝐵𝐶) = ∅))
 
Theoremdisjnims 3973* If a collection 𝐵(𝑖) for 𝑖𝐴 is disjoint, then pairs are disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) (Revised by Jim Kingdon, 7-Oct-2022.)
(Disj 𝑥𝐴 𝐵 → ∀𝑖𝐴𝑗𝐴 (𝑖𝑗 → (𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵) = ∅))
 
Theoremdisji2 3974* Property of a disjoint collection: if 𝐵(𝑋) = 𝐶 and 𝐵(𝑌) = 𝐷, and 𝑋𝑌, then 𝐶 and 𝐷 are disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.)
(𝑥 = 𝑋𝐵 = 𝐶)    &   (𝑥 = 𝑌𝐵 = 𝐷)       ((Disj 𝑥𝐴 𝐵 ∧ (𝑋𝐴𝑌𝐴) ∧ 𝑋𝑌) → (𝐶𝐷) = ∅)
 
Theoreminvdisj 3975* If there is a function 𝐶(𝑦) such that 𝐶(𝑦) = 𝑥 for all 𝑦𝐵(𝑥), then the sets 𝐵(𝑥) for distinct 𝑥𝐴 are disjoint. (Contributed by Mario Carneiro, 10-Dec-2016.)
(∀𝑥𝐴𝑦𝐵 𝐶 = 𝑥Disj 𝑥𝐴 𝐵)
 
Theoremdisjiun 3976* A disjoint collection yields disjoint indexed unions for disjoint index sets. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by Mario Carneiro, 14-Nov-2016.)
((Disj 𝑥𝐴 𝐵 ∧ (𝐶𝐴𝐷𝐴 ∧ (𝐶𝐷) = ∅)) → ( 𝑥𝐶 𝐵 𝑥𝐷 𝐵) = ∅)
 
Theoremsndisj 3977 Any collection of singletons is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.)
Disj 𝑥𝐴 {𝑥}
 
Theorem0disj 3978 Any collection of empty sets is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.)
Disj 𝑥𝐴
 
Theoremdisjxsn 3979* A singleton collection is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.)
Disj 𝑥 ∈ {𝐴}𝐵
 
Theoremdisjx0 3980 An empty collection is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.)
Disj 𝑥 ∈ ∅ 𝐵
 
2.1.22  Binary relations
 
Syntaxwbr 3981 Extend wff notation to include the general binary relation predicate. Note that the syntax is simply three class symbols in a row. Since binary relations are the only possible wff expressions consisting of three class expressions in a row, the syntax is unambiguous.
wff 𝐴𝑅𝐵
 
Definitiondf-br 3982 Define a general binary relation. Note that the syntax is simply three class symbols in a row. Definition 6.18 of [TakeutiZaring] p. 29 generalized to arbitrary classes. This definition of relations is well-defined, although not very meaningful, when classes 𝐴 and/or 𝐵 are proper classes (i.e. are not sets). On the other hand, we often find uses for this definition when 𝑅 is a proper class (see for example iprc 4871). (Contributed by NM, 31-Dec-1993.)
(𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑅)
 
Theorembreq 3983 Equality theorem for binary relations. (Contributed by NM, 4-Jun-1995.)
(𝑅 = 𝑆 → (𝐴𝑅𝐵𝐴𝑆𝐵))
 
Theorembreq1 3984 Equality theorem for a binary relation. (Contributed by NM, 31-Dec-1993.)
(𝐴 = 𝐵 → (𝐴𝑅𝐶𝐵𝑅𝐶))
 
Theorembreq2 3985 Equality theorem for a binary relation. (Contributed by NM, 31-Dec-1993.)
(𝐴 = 𝐵 → (𝐶𝑅𝐴𝐶𝑅𝐵))
 
Theorembreq12 3986 Equality theorem for a binary relation. (Contributed by NM, 8-Feb-1996.)
((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝑅𝐶𝐵𝑅𝐷))
 
Theorembreqi 3987 Equality inference for binary relations. (Contributed by NM, 19-Feb-2005.)
𝑅 = 𝑆       (𝐴𝑅𝐵𝐴𝑆𝐵)
 
Theorembreq1i 3988 Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.)
𝐴 = 𝐵       (𝐴𝑅𝐶𝐵𝑅𝐶)
 
Theorembreq2i 3989 Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.)
𝐴 = 𝐵       (𝐶𝑅𝐴𝐶𝑅𝐵)
 
Theorembreq12i 3990 Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.) (Proof shortened by Eric Schmidt, 4-Apr-2007.)
𝐴 = 𝐵    &   𝐶 = 𝐷       (𝐴𝑅𝐶𝐵𝑅𝐷)
 
Theorembreq1d 3991 Equality deduction for a binary relation. (Contributed by NM, 8-Feb-1996.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐴𝑅𝐶𝐵𝑅𝐶))
 
Theorembreqd 3992 Equality deduction for a binary relation. (Contributed by NM, 29-Oct-2011.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐶𝐴𝐷𝐶𝐵𝐷))
 
Theorembreq2d 3993 Equality deduction for a binary relation. (Contributed by NM, 8-Feb-1996.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐶𝑅𝐴𝐶𝑅𝐵))
 
Theorembreq12d 3994 Equality deduction for a binary relation. (Contributed by NM, 8-Feb-1996.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐷)       (𝜑 → (𝐴𝑅𝐶𝐵𝑅𝐷))
 
Theorembreq123d 3995 Equality deduction for a binary relation. (Contributed by NM, 29-Oct-2011.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝑅 = 𝑆)    &   (𝜑𝐶 = 𝐷)       (𝜑 → (𝐴𝑅𝐶𝐵𝑆𝐷))
 
Theorembreqdi 3996 Equality deduction for a binary relation. (Contributed by Thierry Arnoux, 5-Oct-2020.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐶𝐴𝐷)       (𝜑𝐶𝐵𝐷)
 
Theorembreqan12d 3997 Equality deduction for a binary relation. (Contributed by NM, 8-Feb-1996.)
(𝜑𝐴 = 𝐵)    &   (𝜓𝐶 = 𝐷)       ((𝜑𝜓) → (𝐴𝑅𝐶𝐵𝑅𝐷))
 
Theorembreqan12rd 3998 Equality deduction for a binary relation. (Contributed by NM, 8-Feb-1996.)
(𝜑𝐴 = 𝐵)    &   (𝜓𝐶 = 𝐷)       ((𝜓𝜑) → (𝐴𝑅𝐶𝐵𝑅𝐷))
 
Theoremeqnbrtrd 3999 Substitution of equal classes into the negation of a binary relation. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
(𝜑𝐴 = 𝐵)    &   (𝜑 → ¬ 𝐵𝑅𝐶)       (𝜑 → ¬ 𝐴𝑅𝐶)
 
Theoremnbrne1 4000 Two classes are different if they don't have the same relationship to a third class. (Contributed by NM, 3-Jun-2012.)
((𝐴𝑅𝐵 ∧ ¬ 𝐴𝑅𝐶) → 𝐵𝐶)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-13920
  Copyright terms: Public domain < Previous  Next >