| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > dfdisj2 | GIF version | ||
| Description: Alternate definition for disjoint classes. (Contributed by NM, 17-Jun-2017.) | 
| Ref | Expression | 
|---|---|
| dfdisj2 | ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑦∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-disj 4011 | . 2 ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | |
| 2 | df-rmo 2483 | . . 3 ⊢ (∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
| 3 | 2 | albii 1484 | . 2 ⊢ (∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ↔ ∀𝑦∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | 
| 4 | 1, 3 | bitri 184 | 1 ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑦∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | 
| Colors of variables: wff set class | 
| Syntax hints: ∧ wa 104 ↔ wb 105 ∀wal 1362 ∃*wmo 2046 ∈ wcel 2167 ∃*wrmo 2478 Disj wdisj 4010 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 | 
| This theorem depends on definitions: df-bi 117 df-rmo 2483 df-disj 4011 | 
| This theorem is referenced by: disjss1 4016 nfdisjv 4022 invdisj 4027 sndisj 4029 disjxsn 4031 | 
| Copyright terms: Public domain | W3C validator |