ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfdisj2 GIF version

Theorem dfdisj2 3830
Description: Alternate definition for disjoint classes. (Contributed by NM, 17-Jun-2017.)
Assertion
Ref Expression
dfdisj2 (Disj 𝑥𝐴 𝐵 ↔ ∀𝑦∃*𝑥(𝑥𝐴𝑦𝐵))
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝑦,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem dfdisj2
StepHypRef Expression
1 df-disj 3829 . 2 (Disj 𝑥𝐴 𝐵 ↔ ∀𝑦∃*𝑥𝐴 𝑦𝐵)
2 df-rmo 2368 . . 3 (∃*𝑥𝐴 𝑦𝐵 ↔ ∃*𝑥(𝑥𝐴𝑦𝐵))
32albii 1405 . 2 (∀𝑦∃*𝑥𝐴 𝑦𝐵 ↔ ∀𝑦∃*𝑥(𝑥𝐴𝑦𝐵))
41, 3bitri 183 1 (Disj 𝑥𝐴 𝐵 ↔ ∀𝑦∃*𝑥(𝑥𝐴𝑦𝐵))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  wal 1288  wcel 1439  ∃*wmo 1950  ∃*wrmo 2363  Disj wdisj 3828
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1382  ax-gen 1384
This theorem depends on definitions:  df-bi 116  df-rmo 2368  df-disj 3829
This theorem is referenced by:  disjss1  3834  nfdisjv  3840  invdisj  3845  sndisj  3847  disjxsn  3849
  Copyright terms: Public domain W3C validator