![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dfdisj2 | GIF version |
Description: Alternate definition for disjoint classes. (Contributed by NM, 17-Jun-2017.) |
Ref | Expression |
---|---|
dfdisj2 | ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑦∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-disj 4007 | . 2 ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | |
2 | df-rmo 2480 | . . 3 ⊢ (∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
3 | 2 | albii 1481 | . 2 ⊢ (∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ↔ ∀𝑦∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
4 | 1, 3 | bitri 184 | 1 ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑦∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 ∀wal 1362 ∃*wmo 2043 ∈ wcel 2164 ∃*wrmo 2475 Disj wdisj 4006 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 |
This theorem depends on definitions: df-bi 117 df-rmo 2480 df-disj 4007 |
This theorem is referenced by: disjss1 4012 nfdisjv 4018 invdisj 4023 sndisj 4025 disjxsn 4027 |
Copyright terms: Public domain | W3C validator |