| Step | Hyp | Ref
 | Expression | 
| 1 |   | df-disj 4011 | 
. . . 4
⊢
(Disj 𝑥
∈ 𝐴 𝐵 ↔ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | 
| 2 |   | elin 3346 | 
. . . . . . . . . 10
⊢ (𝑦 ∈ (∪ 𝑥 ∈ 𝐶 𝐵 ∩ ∪
𝑥 ∈ 𝐷 𝐵) ↔ (𝑦 ∈ ∪
𝑥 ∈ 𝐶 𝐵 ∧ 𝑦 ∈ ∪
𝑥 ∈ 𝐷 𝐵)) | 
| 3 |   | eliun 3920 | 
. . . . . . . . . . 11
⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐶 𝐵 ↔ ∃𝑥 ∈ 𝐶 𝑦 ∈ 𝐵) | 
| 4 |   | eliun 3920 | 
. . . . . . . . . . 11
⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐷 𝐵 ↔ ∃𝑥 ∈ 𝐷 𝑦 ∈ 𝐵) | 
| 5 | 3, 4 | anbi12i 460 | 
. . . . . . . . . 10
⊢ ((𝑦 ∈ ∪ 𝑥 ∈ 𝐶 𝐵 ∧ 𝑦 ∈ ∪
𝑥 ∈ 𝐷 𝐵) ↔ (∃𝑥 ∈ 𝐶 𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐷 𝑦 ∈ 𝐵)) | 
| 6 | 2, 5 | bitri 184 | 
. . . . . . . . 9
⊢ (𝑦 ∈ (∪ 𝑥 ∈ 𝐶 𝐵 ∩ ∪
𝑥 ∈ 𝐷 𝐵) ↔ (∃𝑥 ∈ 𝐶 𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐷 𝑦 ∈ 𝐵)) | 
| 7 |   | nfv 1542 | 
. . . . . . . . . . . 12
⊢
Ⅎ𝑤 𝑦 ∈ 𝐵 | 
| 8 | 7 | rmo3 3081 | 
. . . . . . . . . . 11
⊢
(∃*𝑥 ∈
𝐴 𝑦 ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐴 ∀𝑤 ∈ 𝐴 ((𝑦 ∈ 𝐵 ∧ [𝑤 / 𝑥]𝑦 ∈ 𝐵) → 𝑥 = 𝑤)) | 
| 9 |   | simprl 529 | 
. . . . . . . . . . . . . 14
⊢
(((∀𝑥 ∈
𝐴 ∀𝑤 ∈ 𝐴 ((𝑦 ∈ 𝐵 ∧ [𝑤 / 𝑥]𝑦 ∈ 𝐵) → 𝑥 = 𝑤) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴)) ∧ (∃𝑥 ∈ 𝐶 𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐷 𝑦 ∈ 𝐵)) → ∃𝑥 ∈ 𝐶 𝑦 ∈ 𝐵) | 
| 10 |   | nfv 1542 | 
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑢 𝑦 ∈ 𝐵 | 
| 11 |   | nfcsb1v 3117 | 
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑥⦋𝑢 / 𝑥⦌𝐵 | 
| 12 | 11 | nfcri 2333 | 
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑥 𝑦 ∈ ⦋𝑢 / 𝑥⦌𝐵 | 
| 13 |   | csbeq1a 3093 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑢 → 𝐵 = ⦋𝑢 / 𝑥⦌𝐵) | 
| 14 | 13 | eleq2d 2266 | 
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑢 → (𝑦 ∈ 𝐵 ↔ 𝑦 ∈ ⦋𝑢 / 𝑥⦌𝐵)) | 
| 15 | 10, 12, 14 | cbvrex 2726 | 
. . . . . . . . . . . . . 14
⊢
(∃𝑥 ∈
𝐶 𝑦 ∈ 𝐵 ↔ ∃𝑢 ∈ 𝐶 𝑦 ∈ ⦋𝑢 / 𝑥⦌𝐵) | 
| 16 | 9, 15 | sylib 122 | 
. . . . . . . . . . . . 13
⊢
(((∀𝑥 ∈
𝐴 ∀𝑤 ∈ 𝐴 ((𝑦 ∈ 𝐵 ∧ [𝑤 / 𝑥]𝑦 ∈ 𝐵) → 𝑥 = 𝑤) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴)) ∧ (∃𝑥 ∈ 𝐶 𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐷 𝑦 ∈ 𝐵)) → ∃𝑢 ∈ 𝐶 𝑦 ∈ ⦋𝑢 / 𝑥⦌𝐵) | 
| 17 |   | simplrr 536 | 
. . . . . . . . . . . . . . 15
⊢
((((∀𝑥 ∈
𝐴 ∀𝑤 ∈ 𝐴 ((𝑦 ∈ 𝐵 ∧ [𝑤 / 𝑥]𝑦 ∈ 𝐵) → 𝑥 = 𝑤) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴)) ∧ (∃𝑥 ∈ 𝐶 𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐷 𝑦 ∈ 𝐵)) ∧ (𝑢 ∈ 𝐶 ∧ 𝑦 ∈ ⦋𝑢 / 𝑥⦌𝐵)) → ∃𝑥 ∈ 𝐷 𝑦 ∈ 𝐵) | 
| 18 |   | nfv 1542 | 
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑣 𝑦 ∈ 𝐵 | 
| 19 |   | nfcsb1v 3117 | 
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑥⦋𝑣 / 𝑥⦌𝐵 | 
| 20 | 19 | nfcri 2333 | 
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑥 𝑦 ∈ ⦋𝑣 / 𝑥⦌𝐵 | 
| 21 |   | csbeq1a 3093 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑣 → 𝐵 = ⦋𝑣 / 𝑥⦌𝐵) | 
| 22 | 21 | eleq2d 2266 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑣 → (𝑦 ∈ 𝐵 ↔ 𝑦 ∈ ⦋𝑣 / 𝑥⦌𝐵)) | 
| 23 | 18, 20, 22 | cbvrex 2726 | 
. . . . . . . . . . . . . . 15
⊢
(∃𝑥 ∈
𝐷 𝑦 ∈ 𝐵 ↔ ∃𝑣 ∈ 𝐷 𝑦 ∈ ⦋𝑣 / 𝑥⦌𝐵) | 
| 24 | 17, 23 | sylib 122 | 
. . . . . . . . . . . . . 14
⊢
((((∀𝑥 ∈
𝐴 ∀𝑤 ∈ 𝐴 ((𝑦 ∈ 𝐵 ∧ [𝑤 / 𝑥]𝑦 ∈ 𝐵) → 𝑥 = 𝑤) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴)) ∧ (∃𝑥 ∈ 𝐶 𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐷 𝑦 ∈ 𝐵)) ∧ (𝑢 ∈ 𝐶 ∧ 𝑦 ∈ ⦋𝑢 / 𝑥⦌𝐵)) → ∃𝑣 ∈ 𝐷 𝑦 ∈ ⦋𝑣 / 𝑥⦌𝐵) | 
| 25 |   | simplrl 535 | 
. . . . . . . . . . . . . . 15
⊢
(((((∀𝑥
∈ 𝐴 ∀𝑤 ∈ 𝐴 ((𝑦 ∈ 𝐵 ∧ [𝑤 / 𝑥]𝑦 ∈ 𝐵) → 𝑥 = 𝑤) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴)) ∧ (∃𝑥 ∈ 𝐶 𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐷 𝑦 ∈ 𝐵)) ∧ (𝑢 ∈ 𝐶 ∧ 𝑦 ∈ ⦋𝑢 / 𝑥⦌𝐵)) ∧ (𝑣 ∈ 𝐷 ∧ 𝑦 ∈ ⦋𝑣 / 𝑥⦌𝐵)) → 𝑢 ∈ 𝐶) | 
| 26 |   | simprl 529 | 
. . . . . . . . . . . . . . . . . . . 20
⊢
((∀𝑥 ∈
𝐴 ∀𝑤 ∈ 𝐴 ((𝑦 ∈ 𝐵 ∧ [𝑤 / 𝑥]𝑦 ∈ 𝐵) → 𝑥 = 𝑤) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴)) → 𝐶 ⊆ 𝐴) | 
| 27 | 26 | ad3antrrr 492 | 
. . . . . . . . . . . . . . . . . . 19
⊢
(((((∀𝑥
∈ 𝐴 ∀𝑤 ∈ 𝐴 ((𝑦 ∈ 𝐵 ∧ [𝑤 / 𝑥]𝑦 ∈ 𝐵) → 𝑥 = 𝑤) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴)) ∧ (∃𝑥 ∈ 𝐶 𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐷 𝑦 ∈ 𝐵)) ∧ (𝑢 ∈ 𝐶 ∧ 𝑦 ∈ ⦋𝑢 / 𝑥⦌𝐵)) ∧ (𝑣 ∈ 𝐷 ∧ 𝑦 ∈ ⦋𝑣 / 𝑥⦌𝐵)) → 𝐶 ⊆ 𝐴) | 
| 28 | 27, 25 | sseldd 3184 | 
. . . . . . . . . . . . . . . . . 18
⊢
(((((∀𝑥
∈ 𝐴 ∀𝑤 ∈ 𝐴 ((𝑦 ∈ 𝐵 ∧ [𝑤 / 𝑥]𝑦 ∈ 𝐵) → 𝑥 = 𝑤) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴)) ∧ (∃𝑥 ∈ 𝐶 𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐷 𝑦 ∈ 𝐵)) ∧ (𝑢 ∈ 𝐶 ∧ 𝑦 ∈ ⦋𝑢 / 𝑥⦌𝐵)) ∧ (𝑣 ∈ 𝐷 ∧ 𝑦 ∈ ⦋𝑣 / 𝑥⦌𝐵)) → 𝑢 ∈ 𝐴) | 
| 29 |   | simprr 531 | 
. . . . . . . . . . . . . . . . . . . 20
⊢
((∀𝑥 ∈
𝐴 ∀𝑤 ∈ 𝐴 ((𝑦 ∈ 𝐵 ∧ [𝑤 / 𝑥]𝑦 ∈ 𝐵) → 𝑥 = 𝑤) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴)) → 𝐷 ⊆ 𝐴) | 
| 30 | 29 | ad3antrrr 492 | 
. . . . . . . . . . . . . . . . . . 19
⊢
(((((∀𝑥
∈ 𝐴 ∀𝑤 ∈ 𝐴 ((𝑦 ∈ 𝐵 ∧ [𝑤 / 𝑥]𝑦 ∈ 𝐵) → 𝑥 = 𝑤) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴)) ∧ (∃𝑥 ∈ 𝐶 𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐷 𝑦 ∈ 𝐵)) ∧ (𝑢 ∈ 𝐶 ∧ 𝑦 ∈ ⦋𝑢 / 𝑥⦌𝐵)) ∧ (𝑣 ∈ 𝐷 ∧ 𝑦 ∈ ⦋𝑣 / 𝑥⦌𝐵)) → 𝐷 ⊆ 𝐴) | 
| 31 |   | simprl 529 | 
. . . . . . . . . . . . . . . . . . 19
⊢
(((((∀𝑥
∈ 𝐴 ∀𝑤 ∈ 𝐴 ((𝑦 ∈ 𝐵 ∧ [𝑤 / 𝑥]𝑦 ∈ 𝐵) → 𝑥 = 𝑤) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴)) ∧ (∃𝑥 ∈ 𝐶 𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐷 𝑦 ∈ 𝐵)) ∧ (𝑢 ∈ 𝐶 ∧ 𝑦 ∈ ⦋𝑢 / 𝑥⦌𝐵)) ∧ (𝑣 ∈ 𝐷 ∧ 𝑦 ∈ ⦋𝑣 / 𝑥⦌𝐵)) → 𝑣 ∈ 𝐷) | 
| 32 | 30, 31 | sseldd 3184 | 
. . . . . . . . . . . . . . . . . 18
⊢
(((((∀𝑥
∈ 𝐴 ∀𝑤 ∈ 𝐴 ((𝑦 ∈ 𝐵 ∧ [𝑤 / 𝑥]𝑦 ∈ 𝐵) → 𝑥 = 𝑤) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴)) ∧ (∃𝑥 ∈ 𝐶 𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐷 𝑦 ∈ 𝐵)) ∧ (𝑢 ∈ 𝐶 ∧ 𝑦 ∈ ⦋𝑢 / 𝑥⦌𝐵)) ∧ (𝑣 ∈ 𝐷 ∧ 𝑦 ∈ ⦋𝑣 / 𝑥⦌𝐵)) → 𝑣 ∈ 𝐴) | 
| 33 | 28, 32 | jca 306 | 
. . . . . . . . . . . . . . . . 17
⊢
(((((∀𝑥
∈ 𝐴 ∀𝑤 ∈ 𝐴 ((𝑦 ∈ 𝐵 ∧ [𝑤 / 𝑥]𝑦 ∈ 𝐵) → 𝑥 = 𝑤) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴)) ∧ (∃𝑥 ∈ 𝐶 𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐷 𝑦 ∈ 𝐵)) ∧ (𝑢 ∈ 𝐶 ∧ 𝑦 ∈ ⦋𝑢 / 𝑥⦌𝐵)) ∧ (𝑣 ∈ 𝐷 ∧ 𝑦 ∈ ⦋𝑣 / 𝑥⦌𝐵)) → (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) | 
| 34 |   | simp-4l 541 | 
. . . . . . . . . . . . . . . . 17
⊢
(((((∀𝑥
∈ 𝐴 ∀𝑤 ∈ 𝐴 ((𝑦 ∈ 𝐵 ∧ [𝑤 / 𝑥]𝑦 ∈ 𝐵) → 𝑥 = 𝑤) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴)) ∧ (∃𝑥 ∈ 𝐶 𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐷 𝑦 ∈ 𝐵)) ∧ (𝑢 ∈ 𝐶 ∧ 𝑦 ∈ ⦋𝑢 / 𝑥⦌𝐵)) ∧ (𝑣 ∈ 𝐷 ∧ 𝑦 ∈ ⦋𝑣 / 𝑥⦌𝐵)) → ∀𝑥 ∈ 𝐴 ∀𝑤 ∈ 𝐴 ((𝑦 ∈ 𝐵 ∧ [𝑤 / 𝑥]𝑦 ∈ 𝐵) → 𝑥 = 𝑤)) | 
| 35 |   | simplrr 536 | 
. . . . . . . . . . . . . . . . . 18
⊢
(((((∀𝑥
∈ 𝐴 ∀𝑤 ∈ 𝐴 ((𝑦 ∈ 𝐵 ∧ [𝑤 / 𝑥]𝑦 ∈ 𝐵) → 𝑥 = 𝑤) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴)) ∧ (∃𝑥 ∈ 𝐶 𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐷 𝑦 ∈ 𝐵)) ∧ (𝑢 ∈ 𝐶 ∧ 𝑦 ∈ ⦋𝑢 / 𝑥⦌𝐵)) ∧ (𝑣 ∈ 𝐷 ∧ 𝑦 ∈ ⦋𝑣 / 𝑥⦌𝐵)) → 𝑦 ∈ ⦋𝑢 / 𝑥⦌𝐵) | 
| 36 |   | simprr 531 | 
. . . . . . . . . . . . . . . . . . 19
⊢
(((((∀𝑥
∈ 𝐴 ∀𝑤 ∈ 𝐴 ((𝑦 ∈ 𝐵 ∧ [𝑤 / 𝑥]𝑦 ∈ 𝐵) → 𝑥 = 𝑤) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴)) ∧ (∃𝑥 ∈ 𝐶 𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐷 𝑦 ∈ 𝐵)) ∧ (𝑢 ∈ 𝐶 ∧ 𝑦 ∈ ⦋𝑢 / 𝑥⦌𝐵)) ∧ (𝑣 ∈ 𝐷 ∧ 𝑦 ∈ ⦋𝑣 / 𝑥⦌𝐵)) → 𝑦 ∈ ⦋𝑣 / 𝑥⦌𝐵) | 
| 37 | 20, 22 | sbie 1805 | 
. . . . . . . . . . . . . . . . . . 19
⊢ ([𝑣 / 𝑥]𝑦 ∈ 𝐵 ↔ 𝑦 ∈ ⦋𝑣 / 𝑥⦌𝐵) | 
| 38 | 36, 37 | sylibr 134 | 
. . . . . . . . . . . . . . . . . 18
⊢
(((((∀𝑥
∈ 𝐴 ∀𝑤 ∈ 𝐴 ((𝑦 ∈ 𝐵 ∧ [𝑤 / 𝑥]𝑦 ∈ 𝐵) → 𝑥 = 𝑤) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴)) ∧ (∃𝑥 ∈ 𝐶 𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐷 𝑦 ∈ 𝐵)) ∧ (𝑢 ∈ 𝐶 ∧ 𝑦 ∈ ⦋𝑢 / 𝑥⦌𝐵)) ∧ (𝑣 ∈ 𝐷 ∧ 𝑦 ∈ ⦋𝑣 / 𝑥⦌𝐵)) → [𝑣 / 𝑥]𝑦 ∈ 𝐵) | 
| 39 | 35, 38 | jca 306 | 
. . . . . . . . . . . . . . . . 17
⊢
(((((∀𝑥
∈ 𝐴 ∀𝑤 ∈ 𝐴 ((𝑦 ∈ 𝐵 ∧ [𝑤 / 𝑥]𝑦 ∈ 𝐵) → 𝑥 = 𝑤) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴)) ∧ (∃𝑥 ∈ 𝐶 𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐷 𝑦 ∈ 𝐵)) ∧ (𝑢 ∈ 𝐶 ∧ 𝑦 ∈ ⦋𝑢 / 𝑥⦌𝐵)) ∧ (𝑣 ∈ 𝐷 ∧ 𝑦 ∈ ⦋𝑣 / 𝑥⦌𝐵)) → (𝑦 ∈ ⦋𝑢 / 𝑥⦌𝐵 ∧ [𝑣 / 𝑥]𝑦 ∈ 𝐵)) | 
| 40 |   | nfs1v 1958 | 
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑥[𝑤 / 𝑥]𝑦 ∈ 𝐵 | 
| 41 | 12, 40 | nfan 1579 | 
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑥(𝑦 ∈ ⦋𝑢 / 𝑥⦌𝐵 ∧ [𝑤 / 𝑥]𝑦 ∈ 𝐵) | 
| 42 |   | nfv 1542 | 
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑥 𝑢 = 𝑤 | 
| 43 | 41, 42 | nfim 1586 | 
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑥((𝑦 ∈ ⦋𝑢 / 𝑥⦌𝐵 ∧ [𝑤 / 𝑥]𝑦 ∈ 𝐵) → 𝑢 = 𝑤) | 
| 44 |   | nfv 1542 | 
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑤((𝑦 ∈ ⦋𝑢 / 𝑥⦌𝐵 ∧ [𝑣 / 𝑥]𝑦 ∈ 𝐵) → 𝑢 = 𝑣) | 
| 45 | 14 | anbi1d 465 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑢 → ((𝑦 ∈ 𝐵 ∧ [𝑤 / 𝑥]𝑦 ∈ 𝐵) ↔ (𝑦 ∈ ⦋𝑢 / 𝑥⦌𝐵 ∧ [𝑤 / 𝑥]𝑦 ∈ 𝐵))) | 
| 46 |   | equequ1 1726 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑢 → (𝑥 = 𝑤 ↔ 𝑢 = 𝑤)) | 
| 47 | 45, 46 | imbi12d 234 | 
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑢 → (((𝑦 ∈ 𝐵 ∧ [𝑤 / 𝑥]𝑦 ∈ 𝐵) → 𝑥 = 𝑤) ↔ ((𝑦 ∈ ⦋𝑢 / 𝑥⦌𝐵 ∧ [𝑤 / 𝑥]𝑦 ∈ 𝐵) → 𝑢 = 𝑤))) | 
| 48 |   | sbequ 1854 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑤 = 𝑣 → ([𝑤 / 𝑥]𝑦 ∈ 𝐵 ↔ [𝑣 / 𝑥]𝑦 ∈ 𝐵)) | 
| 49 | 48 | anbi2d 464 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 = 𝑣 → ((𝑦 ∈ ⦋𝑢 / 𝑥⦌𝐵 ∧ [𝑤 / 𝑥]𝑦 ∈ 𝐵) ↔ (𝑦 ∈ ⦋𝑢 / 𝑥⦌𝐵 ∧ [𝑣 / 𝑥]𝑦 ∈ 𝐵))) | 
| 50 |   | equequ2 1727 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 = 𝑣 → (𝑢 = 𝑤 ↔ 𝑢 = 𝑣)) | 
| 51 | 49, 50 | imbi12d 234 | 
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 = 𝑣 → (((𝑦 ∈ ⦋𝑢 / 𝑥⦌𝐵 ∧ [𝑤 / 𝑥]𝑦 ∈ 𝐵) → 𝑢 = 𝑤) ↔ ((𝑦 ∈ ⦋𝑢 / 𝑥⦌𝐵 ∧ [𝑣 / 𝑥]𝑦 ∈ 𝐵) → 𝑢 = 𝑣))) | 
| 52 | 43, 44, 47, 51 | rspc2 2879 | 
. . . . . . . . . . . . . . . . 17
⊢ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) → (∀𝑥 ∈ 𝐴 ∀𝑤 ∈ 𝐴 ((𝑦 ∈ 𝐵 ∧ [𝑤 / 𝑥]𝑦 ∈ 𝐵) → 𝑥 = 𝑤) → ((𝑦 ∈ ⦋𝑢 / 𝑥⦌𝐵 ∧ [𝑣 / 𝑥]𝑦 ∈ 𝐵) → 𝑢 = 𝑣))) | 
| 53 | 33, 34, 39, 52 | syl3c 63 | 
. . . . . . . . . . . . . . . 16
⊢
(((((∀𝑥
∈ 𝐴 ∀𝑤 ∈ 𝐴 ((𝑦 ∈ 𝐵 ∧ [𝑤 / 𝑥]𝑦 ∈ 𝐵) → 𝑥 = 𝑤) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴)) ∧ (∃𝑥 ∈ 𝐶 𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐷 𝑦 ∈ 𝐵)) ∧ (𝑢 ∈ 𝐶 ∧ 𝑦 ∈ ⦋𝑢 / 𝑥⦌𝐵)) ∧ (𝑣 ∈ 𝐷 ∧ 𝑦 ∈ ⦋𝑣 / 𝑥⦌𝐵)) → 𝑢 = 𝑣) | 
| 54 | 53, 31 | eqeltrd 2273 | 
. . . . . . . . . . . . . . 15
⊢
(((((∀𝑥
∈ 𝐴 ∀𝑤 ∈ 𝐴 ((𝑦 ∈ 𝐵 ∧ [𝑤 / 𝑥]𝑦 ∈ 𝐵) → 𝑥 = 𝑤) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴)) ∧ (∃𝑥 ∈ 𝐶 𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐷 𝑦 ∈ 𝐵)) ∧ (𝑢 ∈ 𝐶 ∧ 𝑦 ∈ ⦋𝑢 / 𝑥⦌𝐵)) ∧ (𝑣 ∈ 𝐷 ∧ 𝑦 ∈ ⦋𝑣 / 𝑥⦌𝐵)) → 𝑢 ∈ 𝐷) | 
| 55 |   | inelcm 3511 | 
. . . . . . . . . . . . . . 15
⊢ ((𝑢 ∈ 𝐶 ∧ 𝑢 ∈ 𝐷) → (𝐶 ∩ 𝐷) ≠ ∅) | 
| 56 | 25, 54, 55 | syl2anc 411 | 
. . . . . . . . . . . . . 14
⊢
(((((∀𝑥
∈ 𝐴 ∀𝑤 ∈ 𝐴 ((𝑦 ∈ 𝐵 ∧ [𝑤 / 𝑥]𝑦 ∈ 𝐵) → 𝑥 = 𝑤) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴)) ∧ (∃𝑥 ∈ 𝐶 𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐷 𝑦 ∈ 𝐵)) ∧ (𝑢 ∈ 𝐶 ∧ 𝑦 ∈ ⦋𝑢 / 𝑥⦌𝐵)) ∧ (𝑣 ∈ 𝐷 ∧ 𝑦 ∈ ⦋𝑣 / 𝑥⦌𝐵)) → (𝐶 ∩ 𝐷) ≠ ∅) | 
| 57 | 24, 56 | rexlimddv 2619 | 
. . . . . . . . . . . . 13
⊢
((((∀𝑥 ∈
𝐴 ∀𝑤 ∈ 𝐴 ((𝑦 ∈ 𝐵 ∧ [𝑤 / 𝑥]𝑦 ∈ 𝐵) → 𝑥 = 𝑤) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴)) ∧ (∃𝑥 ∈ 𝐶 𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐷 𝑦 ∈ 𝐵)) ∧ (𝑢 ∈ 𝐶 ∧ 𝑦 ∈ ⦋𝑢 / 𝑥⦌𝐵)) → (𝐶 ∩ 𝐷) ≠ ∅) | 
| 58 | 16, 57 | rexlimddv 2619 | 
. . . . . . . . . . . 12
⊢
(((∀𝑥 ∈
𝐴 ∀𝑤 ∈ 𝐴 ((𝑦 ∈ 𝐵 ∧ [𝑤 / 𝑥]𝑦 ∈ 𝐵) → 𝑥 = 𝑤) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴)) ∧ (∃𝑥 ∈ 𝐶 𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐷 𝑦 ∈ 𝐵)) → (𝐶 ∩ 𝐷) ≠ ∅) | 
| 59 | 58 | exp31 364 | 
. . . . . . . . . . 11
⊢
(∀𝑥 ∈
𝐴 ∀𝑤 ∈ 𝐴 ((𝑦 ∈ 𝐵 ∧ [𝑤 / 𝑥]𝑦 ∈ 𝐵) → 𝑥 = 𝑤) → ((𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴) → ((∃𝑥 ∈ 𝐶 𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐷 𝑦 ∈ 𝐵) → (𝐶 ∩ 𝐷) ≠ ∅))) | 
| 60 | 8, 59 | sylbi 121 | 
. . . . . . . . . 10
⊢
(∃*𝑥 ∈
𝐴 𝑦 ∈ 𝐵 → ((𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴) → ((∃𝑥 ∈ 𝐶 𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐷 𝑦 ∈ 𝐵) → (𝐶 ∩ 𝐷) ≠ ∅))) | 
| 61 | 60 | impcom 125 | 
. . . . . . . . 9
⊢ (((𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴) ∧ ∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) → ((∃𝑥 ∈ 𝐶 𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐷 𝑦 ∈ 𝐵) → (𝐶 ∩ 𝐷) ≠ ∅)) | 
| 62 | 6, 61 | biimtrid 152 | 
. . . . . . . 8
⊢ (((𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴) ∧ ∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) → (𝑦 ∈ (∪
𝑥 ∈ 𝐶 𝐵 ∩ ∪
𝑥 ∈ 𝐷 𝐵) → (𝐶 ∩ 𝐷) ≠ ∅)) | 
| 63 | 62 | necon2bd 2425 | 
. . . . . . 7
⊢ (((𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴) ∧ ∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) → ((𝐶 ∩ 𝐷) = ∅ → ¬ 𝑦 ∈ (∪
𝑥 ∈ 𝐶 𝐵 ∩ ∪
𝑥 ∈ 𝐷 𝐵))) | 
| 64 | 63 | impancom 260 | 
. . . . . 6
⊢ (((𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴) ∧ (𝐶 ∩ 𝐷) = ∅) → (∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → ¬ 𝑦 ∈ (∪
𝑥 ∈ 𝐶 𝐵 ∩ ∪
𝑥 ∈ 𝐷 𝐵))) | 
| 65 | 64 | 3impa 1196 | 
. . . . 5
⊢ ((𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴 ∧ (𝐶 ∩ 𝐷) = ∅) → (∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → ¬ 𝑦 ∈ (∪
𝑥 ∈ 𝐶 𝐵 ∩ ∪
𝑥 ∈ 𝐷 𝐵))) | 
| 66 | 65 | alimdv 1893 | 
. . . 4
⊢ ((𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴 ∧ (𝐶 ∩ 𝐷) = ∅) → (∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → ∀𝑦 ¬ 𝑦 ∈ (∪
𝑥 ∈ 𝐶 𝐵 ∩ ∪
𝑥 ∈ 𝐷 𝐵))) | 
| 67 | 1, 66 | biimtrid 152 | 
. . 3
⊢ ((𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴 ∧ (𝐶 ∩ 𝐷) = ∅) → (Disj 𝑥 ∈ 𝐴 𝐵 → ∀𝑦 ¬ 𝑦 ∈ (∪
𝑥 ∈ 𝐶 𝐵 ∩ ∪
𝑥 ∈ 𝐷 𝐵))) | 
| 68 | 67 | impcom 125 | 
. 2
⊢
((Disj 𝑥
∈ 𝐴 𝐵 ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴 ∧ (𝐶 ∩ 𝐷) = ∅)) → ∀𝑦 ¬ 𝑦 ∈ (∪
𝑥 ∈ 𝐶 𝐵 ∩ ∪
𝑥 ∈ 𝐷 𝐵)) | 
| 69 |   | eq0 3469 | 
. 2
⊢
((∪ 𝑥 ∈ 𝐶 𝐵 ∩ ∪
𝑥 ∈ 𝐷 𝐵) = ∅ ↔ ∀𝑦 ¬ 𝑦 ∈ (∪
𝑥 ∈ 𝐶 𝐵 ∩ ∪
𝑥 ∈ 𝐷 𝐵)) | 
| 70 | 68, 69 | sylibr 134 | 
1
⊢
((Disj 𝑥
∈ 𝐴 𝐵 ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴 ∧ (𝐶 ∩ 𝐷) = ∅)) → (∪ 𝑥 ∈ 𝐶 𝐵 ∩ ∪
𝑥 ∈ 𝐷 𝐵) = ∅) |