ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disjnim GIF version

Theorem disjnim 4073
Description: If a collection 𝐵(𝑖) for 𝑖𝐴 is disjoint, then pairs are disjoint. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by Jim Kingdon, 6-Oct-2022.)
Hypothesis
Ref Expression
disjnim.1 (𝑖 = 𝑗𝐵 = 𝐶)
Assertion
Ref Expression
disjnim (Disj 𝑖𝐴 𝐵 → ∀𝑖𝐴𝑗𝐴 (𝑖𝑗 → (𝐵𝐶) = ∅))
Distinct variable groups:   𝑖,𝑗,𝐴   𝐵,𝑗   𝐶,𝑖
Allowed substitution hints:   𝐵(𝑖)   𝐶(𝑗)

Proof of Theorem disjnim
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-disj 4060 . 2 (Disj 𝑖𝐴 𝐵 ↔ ∀𝑥∃*𝑖𝐴 𝑥𝐵)
2 disjnim.1 . . . . . . 7 (𝑖 = 𝑗𝐵 = 𝐶)
32eleq2d 2299 . . . . . 6 (𝑖 = 𝑗 → (𝑥𝐵𝑥𝐶))
43rmo4 2996 . . . . 5 (∃*𝑖𝐴 𝑥𝐵 ↔ ∀𝑖𝐴𝑗𝐴 ((𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗))
54albii 1516 . . . 4 (∀𝑥∃*𝑖𝐴 𝑥𝐵 ↔ ∀𝑥𝑖𝐴𝑗𝐴 ((𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗))
6 ralcom4 2822 . . . 4 (∀𝑖𝐴𝑥𝑗𝐴 ((𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗) ↔ ∀𝑥𝑖𝐴𝑗𝐴 ((𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗))
75, 6bitr4i 187 . . 3 (∀𝑥∃*𝑖𝐴 𝑥𝐵 ↔ ∀𝑖𝐴𝑥𝑗𝐴 ((𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗))
8 ralcom4 2822 . . . . 5 (∀𝑗𝐴𝑥((𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗) ↔ ∀𝑥𝑗𝐴 ((𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗))
9 19.23v 1929 . . . . . . . . 9 (∀𝑥((𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗) ↔ (∃𝑥(𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗))
109biimpi 120 . . . . . . . 8 (∀𝑥((𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗) → (∃𝑥(𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗))
1110necon3ad 2442 . . . . . . 7 (∀𝑥((𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗) → (𝑖𝑗 → ¬ ∃𝑥(𝑥𝐵𝑥𝐶)))
12 notm0 3512 . . . . . . . 8 (¬ ∃𝑥 𝑥 ∈ (𝐵𝐶) ↔ (𝐵𝐶) = ∅)
13 elin 3387 . . . . . . . . . 10 (𝑥 ∈ (𝐵𝐶) ↔ (𝑥𝐵𝑥𝐶))
1413exbii 1651 . . . . . . . . 9 (∃𝑥 𝑥 ∈ (𝐵𝐶) ↔ ∃𝑥(𝑥𝐵𝑥𝐶))
1514notbii 672 . . . . . . . 8 (¬ ∃𝑥 𝑥 ∈ (𝐵𝐶) ↔ ¬ ∃𝑥(𝑥𝐵𝑥𝐶))
1612, 15bitr3i 186 . . . . . . 7 ((𝐵𝐶) = ∅ ↔ ¬ ∃𝑥(𝑥𝐵𝑥𝐶))
1711, 16imbitrrdi 162 . . . . . 6 (∀𝑥((𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗) → (𝑖𝑗 → (𝐵𝐶) = ∅))
1817ralimi 2593 . . . . 5 (∀𝑗𝐴𝑥((𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗) → ∀𝑗𝐴 (𝑖𝑗 → (𝐵𝐶) = ∅))
198, 18sylbir 135 . . . 4 (∀𝑥𝑗𝐴 ((𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗) → ∀𝑗𝐴 (𝑖𝑗 → (𝐵𝐶) = ∅))
2019ralimi 2593 . . 3 (∀𝑖𝐴𝑥𝑗𝐴 ((𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗) → ∀𝑖𝐴𝑗𝐴 (𝑖𝑗 → (𝐵𝐶) = ∅))
217, 20sylbi 121 . 2 (∀𝑥∃*𝑖𝐴 𝑥𝐵 → ∀𝑖𝐴𝑗𝐴 (𝑖𝑗 → (𝐵𝐶) = ∅))
221, 21sylbi 121 1 (Disj 𝑖𝐴 𝐵 → ∀𝑖𝐴𝑗𝐴 (𝑖𝑗 → (𝐵𝐶) = ∅))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wal 1393   = wceq 1395  wex 1538  wcel 2200  wne 2400  wral 2508  ∃*wrmo 2511  cin 3196  c0 3491  Disj wdisj 4059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rmo 2516  df-v 2801  df-dif 3199  df-in 3203  df-nul 3492  df-disj 4060
This theorem is referenced by:  disjnims  4074
  Copyright terms: Public domain W3C validator