ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disjnim GIF version

Theorem disjnim 4024
Description: If a collection 𝐵(𝑖) for 𝑖𝐴 is disjoint, then pairs are disjoint. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by Jim Kingdon, 6-Oct-2022.)
Hypothesis
Ref Expression
disjnim.1 (𝑖 = 𝑗𝐵 = 𝐶)
Assertion
Ref Expression
disjnim (Disj 𝑖𝐴 𝐵 → ∀𝑖𝐴𝑗𝐴 (𝑖𝑗 → (𝐵𝐶) = ∅))
Distinct variable groups:   𝑖,𝑗,𝐴   𝐵,𝑗   𝐶,𝑖
Allowed substitution hints:   𝐵(𝑖)   𝐶(𝑗)

Proof of Theorem disjnim
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-disj 4011 . 2 (Disj 𝑖𝐴 𝐵 ↔ ∀𝑥∃*𝑖𝐴 𝑥𝐵)
2 disjnim.1 . . . . . . 7 (𝑖 = 𝑗𝐵 = 𝐶)
32eleq2d 2266 . . . . . 6 (𝑖 = 𝑗 → (𝑥𝐵𝑥𝐶))
43rmo4 2957 . . . . 5 (∃*𝑖𝐴 𝑥𝐵 ↔ ∀𝑖𝐴𝑗𝐴 ((𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗))
54albii 1484 . . . 4 (∀𝑥∃*𝑖𝐴 𝑥𝐵 ↔ ∀𝑥𝑖𝐴𝑗𝐴 ((𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗))
6 ralcom4 2785 . . . 4 (∀𝑖𝐴𝑥𝑗𝐴 ((𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗) ↔ ∀𝑥𝑖𝐴𝑗𝐴 ((𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗))
75, 6bitr4i 187 . . 3 (∀𝑥∃*𝑖𝐴 𝑥𝐵 ↔ ∀𝑖𝐴𝑥𝑗𝐴 ((𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗))
8 ralcom4 2785 . . . . 5 (∀𝑗𝐴𝑥((𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗) ↔ ∀𝑥𝑗𝐴 ((𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗))
9 19.23v 1897 . . . . . . . . 9 (∀𝑥((𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗) ↔ (∃𝑥(𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗))
109biimpi 120 . . . . . . . 8 (∀𝑥((𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗) → (∃𝑥(𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗))
1110necon3ad 2409 . . . . . . 7 (∀𝑥((𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗) → (𝑖𝑗 → ¬ ∃𝑥(𝑥𝐵𝑥𝐶)))
12 notm0 3471 . . . . . . . 8 (¬ ∃𝑥 𝑥 ∈ (𝐵𝐶) ↔ (𝐵𝐶) = ∅)
13 elin 3346 . . . . . . . . . 10 (𝑥 ∈ (𝐵𝐶) ↔ (𝑥𝐵𝑥𝐶))
1413exbii 1619 . . . . . . . . 9 (∃𝑥 𝑥 ∈ (𝐵𝐶) ↔ ∃𝑥(𝑥𝐵𝑥𝐶))
1514notbii 669 . . . . . . . 8 (¬ ∃𝑥 𝑥 ∈ (𝐵𝐶) ↔ ¬ ∃𝑥(𝑥𝐵𝑥𝐶))
1612, 15bitr3i 186 . . . . . . 7 ((𝐵𝐶) = ∅ ↔ ¬ ∃𝑥(𝑥𝐵𝑥𝐶))
1711, 16imbitrrdi 162 . . . . . 6 (∀𝑥((𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗) → (𝑖𝑗 → (𝐵𝐶) = ∅))
1817ralimi 2560 . . . . 5 (∀𝑗𝐴𝑥((𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗) → ∀𝑗𝐴 (𝑖𝑗 → (𝐵𝐶) = ∅))
198, 18sylbir 135 . . . 4 (∀𝑥𝑗𝐴 ((𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗) → ∀𝑗𝐴 (𝑖𝑗 → (𝐵𝐶) = ∅))
2019ralimi 2560 . . 3 (∀𝑖𝐴𝑥𝑗𝐴 ((𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗) → ∀𝑖𝐴𝑗𝐴 (𝑖𝑗 → (𝐵𝐶) = ∅))
217, 20sylbi 121 . 2 (∀𝑥∃*𝑖𝐴 𝑥𝐵 → ∀𝑖𝐴𝑗𝐴 (𝑖𝑗 → (𝐵𝐶) = ∅))
221, 21sylbi 121 1 (Disj 𝑖𝐴 𝐵 → ∀𝑖𝐴𝑗𝐴 (𝑖𝑗 → (𝐵𝐶) = ∅))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wal 1362   = wceq 1364  wex 1506  wcel 2167  wne 2367  wral 2475  ∃*wrmo 2478  cin 3156  c0 3450  Disj wdisj 4010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rmo 2483  df-v 2765  df-dif 3159  df-in 3163  df-nul 3451  df-disj 4011
This theorem is referenced by:  disjnims  4025
  Copyright terms: Public domain W3C validator