Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-disj | Unicode version |
Description: A collection of classes is disjoint when for each element , it is in for at most one . (Contributed by Mario Carneiro, 14-Nov-2016.) (Revised by NM, 16-Jun-2017.) |
Ref | Expression |
---|---|
df-disj | Disj |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vx | . . 3 | |
2 | cA | . . 3 | |
3 | cB | . . 3 | |
4 | 1, 2, 3 | wdisj 3944 | . 2 Disj |
5 | vy | . . . . . 6 | |
6 | 5 | cv 1334 | . . . . 5 |
7 | 6, 3 | wcel 2128 | . . . 4 |
8 | 7, 1, 2 | wrmo 2438 | . . 3 |
9 | 8, 5 | wal 1333 | . 2 |
10 | 4, 9 | wb 104 | 1 Disj |
Colors of variables: wff set class |
This definition is referenced by: dfdisj2 3946 disjss2 3947 cbvdisj 3954 nfdisj1 3957 disjnim 3958 disjiun 3962 disjxp1 6185 |
Copyright terms: Public domain | W3C validator |