ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfdisj1 GIF version

Theorem nfdisj1 3979
Description: Bound-variable hypothesis builder for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
nfdisj1 𝑥Disj 𝑥𝐴 𝐵

Proof of Theorem nfdisj1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-disj 3967 . 2 (Disj 𝑥𝐴 𝐵 ↔ ∀𝑦∃*𝑥𝐴 𝑦𝐵)
2 nfrmo1 2642 . . 3 𝑥∃*𝑥𝐴 𝑦𝐵
32nfal 1569 . 2 𝑥𝑦∃*𝑥𝐴 𝑦𝐵
41, 3nfxfr 1467 1 𝑥Disj 𝑥𝐴 𝐵
Colors of variables: wff set class
Syntax hints:  wal 1346  wnf 1453  wcel 2141  ∃*wrmo 2451  Disj wdisj 3966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-ial 1527  ax-i5r 1528
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-eu 2022  df-mo 2023  df-rmo 2456  df-disj 3967
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator