ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfdisj1 GIF version

Theorem nfdisj1 4033
Description: Bound-variable hypothesis builder for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
nfdisj1 𝑥Disj 𝑥𝐴 𝐵

Proof of Theorem nfdisj1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-disj 4021 . 2 (Disj 𝑥𝐴 𝐵 ↔ ∀𝑦∃*𝑥𝐴 𝑦𝐵)
2 nfrmo1 2678 . . 3 𝑥∃*𝑥𝐴 𝑦𝐵
32nfal 1598 . 2 𝑥𝑦∃*𝑥𝐴 𝑦𝐵
41, 3nfxfr 1496 1 𝑥Disj 𝑥𝐴 𝐵
Colors of variables: wff set class
Syntax hints:  wal 1370  wnf 1482  wcel 2175  ∃*wrmo 2486  Disj wdisj 4020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-4 1532  ax-ial 1556  ax-i5r 1557
This theorem depends on definitions:  df-bi 117  df-nf 1483  df-eu 2056  df-mo 2057  df-rmo 2491  df-disj 4021
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator