Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfdisj1 | GIF version |
Description: Bound-variable hypothesis builder for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.) |
Ref | Expression |
---|---|
nfdisj1 | ⊢ Ⅎ𝑥Disj 𝑥 ∈ 𝐴 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-disj 3960 | . 2 ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | |
2 | nfrmo1 2638 | . . 3 ⊢ Ⅎ𝑥∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 | |
3 | 2 | nfal 1564 | . 2 ⊢ Ⅎ𝑥∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 |
4 | 1, 3 | nfxfr 1462 | 1 ⊢ Ⅎ𝑥Disj 𝑥 ∈ 𝐴 𝐵 |
Colors of variables: wff set class |
Syntax hints: ∀wal 1341 Ⅎwnf 1448 ∈ wcel 2136 ∃*wrmo 2447 Disj wdisj 3959 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-ial 1522 ax-i5r 1523 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-eu 2017 df-mo 2018 df-rmo 2452 df-disj 3960 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |