Detailed syntax breakdown of Definition df-enq0
| Step | Hyp | Ref
 | Expression | 
| 1 |   | ceq0 7353 | 
. 2
class 
~Q0 | 
| 2 |   | vx | 
. . . . . . 7
setvar 𝑥 | 
| 3 | 2 | cv 1363 | 
. . . . . 6
class 𝑥 | 
| 4 |   | com 4626 | 
. . . . . . 7
class
ω | 
| 5 |   | cnpi 7339 | 
. . . . . . 7
class
N | 
| 6 | 4, 5 | cxp 4661 | 
. . . . . 6
class (ω
× N) | 
| 7 | 3, 6 | wcel 2167 | 
. . . . 5
wff 𝑥 ∈ (ω ×
N) | 
| 8 |   | vy | 
. . . . . . 7
setvar 𝑦 | 
| 9 | 8 | cv 1363 | 
. . . . . 6
class 𝑦 | 
| 10 | 9, 6 | wcel 2167 | 
. . . . 5
wff 𝑦 ∈ (ω ×
N) | 
| 11 | 7, 10 | wa 104 | 
. . . 4
wff (𝑥 ∈ (ω ×
N) ∧ 𝑦
∈ (ω × N)) | 
| 12 |   | vz | 
. . . . . . . . . . . . 13
setvar 𝑧 | 
| 13 | 12 | cv 1363 | 
. . . . . . . . . . . 12
class 𝑧 | 
| 14 |   | vw | 
. . . . . . . . . . . . 13
setvar 𝑤 | 
| 15 | 14 | cv 1363 | 
. . . . . . . . . . . 12
class 𝑤 | 
| 16 | 13, 15 | cop 3625 | 
. . . . . . . . . . 11
class
〈𝑧, 𝑤〉 | 
| 17 | 3, 16 | wceq 1364 | 
. . . . . . . . . 10
wff 𝑥 = 〈𝑧, 𝑤〉 | 
| 18 |   | vv | 
. . . . . . . . . . . . 13
setvar 𝑣 | 
| 19 | 18 | cv 1363 | 
. . . . . . . . . . . 12
class 𝑣 | 
| 20 |   | vu | 
. . . . . . . . . . . . 13
setvar 𝑢 | 
| 21 | 20 | cv 1363 | 
. . . . . . . . . . . 12
class 𝑢 | 
| 22 | 19, 21 | cop 3625 | 
. . . . . . . . . . 11
class
〈𝑣, 𝑢〉 | 
| 23 | 9, 22 | wceq 1364 | 
. . . . . . . . . 10
wff 𝑦 = 〈𝑣, 𝑢〉 | 
| 24 | 17, 23 | wa 104 | 
. . . . . . . . 9
wff (𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) | 
| 25 |   | comu 6472 | 
. . . . . . . . . . 11
class 
·o | 
| 26 | 13, 21, 25 | co 5922 | 
. . . . . . . . . 10
class (𝑧 ·o 𝑢) | 
| 27 | 15, 19, 25 | co 5922 | 
. . . . . . . . . 10
class (𝑤 ·o 𝑣) | 
| 28 | 26, 27 | wceq 1364 | 
. . . . . . . . 9
wff (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣) | 
| 29 | 24, 28 | wa 104 | 
. . . . . . . 8
wff ((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)) | 
| 30 | 29, 20 | wex 1506 | 
. . . . . . 7
wff
∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)) | 
| 31 | 30, 18 | wex 1506 | 
. . . . . 6
wff
∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)) | 
| 32 | 31, 14 | wex 1506 | 
. . . . 5
wff
∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)) | 
| 33 | 32, 12 | wex 1506 | 
. . . 4
wff
∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)) | 
| 34 | 11, 33 | wa 104 | 
. . 3
wff ((𝑥 ∈ (ω ×
N) ∧ 𝑦
∈ (ω × N)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))) | 
| 35 | 34, 2, 8 | copab 4093 | 
. 2
class
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (ω ×
N) ∧ 𝑦
∈ (ω × N)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)))} | 
| 36 | 1, 35 | wceq 1364 | 
1
wff 
~Q0 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (ω × N)
∧ 𝑦 ∈ (ω
× N)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)))} |