Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > enq0er | GIF version |
Description: The equivalence relation for nonnegative fractions is an equivalence relation. (Contributed by Jim Kingdon, 12-Nov-2019.) |
Ref | Expression |
---|---|
enq0er | ⊢ ~Q0 Er (ω × N) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-enq0 7365 | . . . . 5 ⊢ ~Q0 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)))} | |
2 | 1 | relopabi 4730 | . . . 4 ⊢ Rel ~Q0 |
3 | 2 | a1i 9 | . . 3 ⊢ (⊤ → Rel ~Q0 ) |
4 | enq0sym 7373 | . . . 4 ⊢ (𝑓 ~Q0 𝑔 → 𝑔 ~Q0 𝑓) | |
5 | 4 | adantl 275 | . . 3 ⊢ ((⊤ ∧ 𝑓 ~Q0 𝑔) → 𝑔 ~Q0 𝑓) |
6 | enq0tr 7375 | . . . 4 ⊢ ((𝑓 ~Q0 𝑔 ∧ 𝑔 ~Q0 ℎ) → 𝑓 ~Q0 ℎ) | |
7 | 6 | adantl 275 | . . 3 ⊢ ((⊤ ∧ (𝑓 ~Q0 𝑔 ∧ 𝑔 ~Q0 ℎ)) → 𝑓 ~Q0 ℎ) |
8 | enq0ref 7374 | . . . 4 ⊢ (𝑓 ∈ (ω × N) ↔ 𝑓 ~Q0 𝑓) | |
9 | 8 | a1i 9 | . . 3 ⊢ (⊤ → (𝑓 ∈ (ω × N) ↔ 𝑓 ~Q0 𝑓)) |
10 | 3, 5, 7, 9 | iserd 6527 | . 2 ⊢ (⊤ → ~Q0 Er (ω × N)) |
11 | 10 | mptru 1352 | 1 ⊢ ~Q0 Er (ω × N) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 = wceq 1343 ⊤wtru 1344 ∃wex 1480 ∈ wcel 2136 〈cop 3579 class class class wbr 3982 ωcom 4567 × cxp 4602 Rel wrel 4609 (class class class)co 5842 ·o comu 6382 Er wer 6498 Ncnpi 7213 ~Q0 ceq0 7227 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-oadd 6388 df-omul 6389 df-er 6501 df-ni 7245 df-enq0 7365 |
This theorem is referenced by: enq0eceq 7378 nqnq0pi 7379 mulcanenq0ec 7386 nnnq0lem1 7387 addnq0mo 7388 mulnq0mo 7389 |
Copyright terms: Public domain | W3C validator |