ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enq0er GIF version

Theorem enq0er 7243
Description: The equivalence relation for nonnegative fractions is an equivalence relation. (Contributed by Jim Kingdon, 12-Nov-2019.)
Assertion
Ref Expression
enq0er ~Q0 Er (ω × N)

Proof of Theorem enq0er
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-enq0 7232 . . . . 5 ~Q0 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)))}
21relopabi 4665 . . . 4 Rel ~Q0
32a1i 9 . . 3 (⊤ → Rel ~Q0 )
4 enq0sym 7240 . . . 4 (𝑓 ~Q0 𝑔𝑔 ~Q0 𝑓)
54adantl 275 . . 3 ((⊤ ∧ 𝑓 ~Q0 𝑔) → 𝑔 ~Q0 𝑓)
6 enq0tr 7242 . . . 4 ((𝑓 ~Q0 𝑔𝑔 ~Q0 ) → 𝑓 ~Q0 )
76adantl 275 . . 3 ((⊤ ∧ (𝑓 ~Q0 𝑔𝑔 ~Q0 )) → 𝑓 ~Q0 )
8 enq0ref 7241 . . . 4 (𝑓 ∈ (ω × N) ↔ 𝑓 ~Q0 𝑓)
98a1i 9 . . 3 (⊤ → (𝑓 ∈ (ω × N) ↔ 𝑓 ~Q0 𝑓))
103, 5, 7, 9iserd 6455 . 2 (⊤ → ~Q0 Er (ω × N))
1110mptru 1340 1 ~Q0 Er (ω × N)
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104   = wceq 1331  wtru 1332  wex 1468  wcel 1480  cop 3530   class class class wbr 3929  ωcom 4504   × cxp 4537  Rel wrel 4544  (class class class)co 5774   ·o comu 6311   Er wer 6426  Ncnpi 7080   ~Q0 ceq0 7094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-oadd 6317  df-omul 6318  df-er 6429  df-ni 7112  df-enq0 7232
This theorem is referenced by:  enq0eceq  7245  nqnq0pi  7246  mulcanenq0ec  7253  nnnq0lem1  7254  addnq0mo  7255  mulnq0mo  7256
  Copyright terms: Public domain W3C validator