ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enq0er GIF version

Theorem enq0er 7267
Description: The equivalence relation for nonnegative fractions is an equivalence relation. (Contributed by Jim Kingdon, 12-Nov-2019.)
Assertion
Ref Expression
enq0er ~Q0 Er (ω × N)

Proof of Theorem enq0er
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-enq0 7256 . . . . 5 ~Q0 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)))}
21relopabi 4673 . . . 4 Rel ~Q0
32a1i 9 . . 3 (⊤ → Rel ~Q0 )
4 enq0sym 7264 . . . 4 (𝑓 ~Q0 𝑔𝑔 ~Q0 𝑓)
54adantl 275 . . 3 ((⊤ ∧ 𝑓 ~Q0 𝑔) → 𝑔 ~Q0 𝑓)
6 enq0tr 7266 . . . 4 ((𝑓 ~Q0 𝑔𝑔 ~Q0 ) → 𝑓 ~Q0 )
76adantl 275 . . 3 ((⊤ ∧ (𝑓 ~Q0 𝑔𝑔 ~Q0 )) → 𝑓 ~Q0 )
8 enq0ref 7265 . . . 4 (𝑓 ∈ (ω × N) ↔ 𝑓 ~Q0 𝑓)
98a1i 9 . . 3 (⊤ → (𝑓 ∈ (ω × N) ↔ 𝑓 ~Q0 𝑓))
103, 5, 7, 9iserd 6463 . 2 (⊤ → ~Q0 Er (ω × N))
1110mptru 1341 1 ~Q0 Er (ω × N)
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104   = wceq 1332  wtru 1333  wex 1469  wcel 1481  cop 3535   class class class wbr 3937  ωcom 4512   × cxp 4545  Rel wrel 4552  (class class class)co 5782   ·o comu 6319   Er wer 6434  Ncnpi 7104   ~Q0 ceq0 7118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-oadd 6325  df-omul 6326  df-er 6437  df-ni 7136  df-enq0 7256
This theorem is referenced by:  enq0eceq  7269  nqnq0pi  7270  mulcanenq0ec  7277  nnnq0lem1  7278  addnq0mo  7279  mulnq0mo  7280
  Copyright terms: Public domain W3C validator