ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enq0er GIF version

Theorem enq0er 7433
Description: The equivalence relation for nonnegative fractions is an equivalence relation. (Contributed by Jim Kingdon, 12-Nov-2019.)
Assertion
Ref Expression
enq0er ~Q0 Er (ω × N)

Proof of Theorem enq0er
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-enq0 7422 . . . . 5 ~Q0 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)))}
21relopabi 4752 . . . 4 Rel ~Q0
32a1i 9 . . 3 (⊤ → Rel ~Q0 )
4 enq0sym 7430 . . . 4 (𝑓 ~Q0 𝑔𝑔 ~Q0 𝑓)
54adantl 277 . . 3 ((⊤ ∧ 𝑓 ~Q0 𝑔) → 𝑔 ~Q0 𝑓)
6 enq0tr 7432 . . . 4 ((𝑓 ~Q0 𝑔𝑔 ~Q0 ) → 𝑓 ~Q0 )
76adantl 277 . . 3 ((⊤ ∧ (𝑓 ~Q0 𝑔𝑔 ~Q0 )) → 𝑓 ~Q0 )
8 enq0ref 7431 . . . 4 (𝑓 ∈ (ω × N) ↔ 𝑓 ~Q0 𝑓)
98a1i 9 . . 3 (⊤ → (𝑓 ∈ (ω × N) ↔ 𝑓 ~Q0 𝑓))
103, 5, 7, 9iserd 6560 . 2 (⊤ → ~Q0 Er (ω × N))
1110mptru 1362 1 ~Q0 Er (ω × N)
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1353  wtru 1354  wex 1492  wcel 2148  cop 3595   class class class wbr 4003  ωcom 4589   × cxp 4624  Rel wrel 4631  (class class class)co 5874   ·o comu 6414   Er wer 6531  Ncnpi 7270   ~Q0 ceq0 7284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-iinf 4587
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-tr 4102  df-id 4293  df-iord 4366  df-on 4368  df-suc 4371  df-iom 4590  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-ov 5877  df-oprab 5878  df-mpo 5879  df-1st 6140  df-2nd 6141  df-recs 6305  df-irdg 6370  df-oadd 6420  df-omul 6421  df-er 6534  df-ni 7302  df-enq0 7422
This theorem is referenced by:  enq0eceq  7435  nqnq0pi  7436  mulcanenq0ec  7443  nnnq0lem1  7444  addnq0mo  7445  mulnq0mo  7446
  Copyright terms: Public domain W3C validator