| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > enq0er | GIF version | ||
| Description: The equivalence relation for nonnegative fractions is an equivalence relation. (Contributed by Jim Kingdon, 12-Nov-2019.) |
| Ref | Expression |
|---|---|
| enq0er | ⊢ ~Q0 Er (ω × N) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-enq0 7544 | . . . . 5 ⊢ ~Q0 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)))} | |
| 2 | 1 | relopabi 4807 | . . . 4 ⊢ Rel ~Q0 |
| 3 | 2 | a1i 9 | . . 3 ⊢ (⊤ → Rel ~Q0 ) |
| 4 | enq0sym 7552 | . . . 4 ⊢ (𝑓 ~Q0 𝑔 → 𝑔 ~Q0 𝑓) | |
| 5 | 4 | adantl 277 | . . 3 ⊢ ((⊤ ∧ 𝑓 ~Q0 𝑔) → 𝑔 ~Q0 𝑓) |
| 6 | enq0tr 7554 | . . . 4 ⊢ ((𝑓 ~Q0 𝑔 ∧ 𝑔 ~Q0 ℎ) → 𝑓 ~Q0 ℎ) | |
| 7 | 6 | adantl 277 | . . 3 ⊢ ((⊤ ∧ (𝑓 ~Q0 𝑔 ∧ 𝑔 ~Q0 ℎ)) → 𝑓 ~Q0 ℎ) |
| 8 | enq0ref 7553 | . . . 4 ⊢ (𝑓 ∈ (ω × N) ↔ 𝑓 ~Q0 𝑓) | |
| 9 | 8 | a1i 9 | . . 3 ⊢ (⊤ → (𝑓 ∈ (ω × N) ↔ 𝑓 ~Q0 𝑓)) |
| 10 | 3, 5, 7, 9 | iserd 6653 | . 2 ⊢ (⊤ → ~Q0 Er (ω × N)) |
| 11 | 10 | mptru 1382 | 1 ⊢ ~Q0 Er (ω × N) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1373 ⊤wtru 1374 ∃wex 1516 ∈ wcel 2177 〈cop 3637 class class class wbr 4047 ωcom 4642 × cxp 4677 Rel wrel 4684 (class class class)co 5951 ·o comu 6507 Er wer 6624 Ncnpi 7392 ~Q0 ceq0 7406 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-id 4344 df-iord 4417 df-on 4419 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-recs 6398 df-irdg 6463 df-oadd 6513 df-omul 6514 df-er 6627 df-ni 7424 df-enq0 7544 |
| This theorem is referenced by: enq0eceq 7557 nqnq0pi 7558 mulcanenq0ec 7565 nnnq0lem1 7566 addnq0mo 7567 mulnq0mo 7568 |
| Copyright terms: Public domain | W3C validator |