| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > enq0er | GIF version | ||
| Description: The equivalence relation for nonnegative fractions is an equivalence relation. (Contributed by Jim Kingdon, 12-Nov-2019.) |
| Ref | Expression |
|---|---|
| enq0er | ⊢ ~Q0 Er (ω × N) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-enq0 7579 | . . . . 5 ⊢ ~Q0 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)))} | |
| 2 | 1 | relopabi 4824 | . . . 4 ⊢ Rel ~Q0 |
| 3 | 2 | a1i 9 | . . 3 ⊢ (⊤ → Rel ~Q0 ) |
| 4 | enq0sym 7587 | . . . 4 ⊢ (𝑓 ~Q0 𝑔 → 𝑔 ~Q0 𝑓) | |
| 5 | 4 | adantl 277 | . . 3 ⊢ ((⊤ ∧ 𝑓 ~Q0 𝑔) → 𝑔 ~Q0 𝑓) |
| 6 | enq0tr 7589 | . . . 4 ⊢ ((𝑓 ~Q0 𝑔 ∧ 𝑔 ~Q0 ℎ) → 𝑓 ~Q0 ℎ) | |
| 7 | 6 | adantl 277 | . . 3 ⊢ ((⊤ ∧ (𝑓 ~Q0 𝑔 ∧ 𝑔 ~Q0 ℎ)) → 𝑓 ~Q0 ℎ) |
| 8 | enq0ref 7588 | . . . 4 ⊢ (𝑓 ∈ (ω × N) ↔ 𝑓 ~Q0 𝑓) | |
| 9 | 8 | a1i 9 | . . 3 ⊢ (⊤ → (𝑓 ∈ (ω × N) ↔ 𝑓 ~Q0 𝑓)) |
| 10 | 3, 5, 7, 9 | iserd 6676 | . 2 ⊢ (⊤ → ~Q0 Er (ω × N)) |
| 11 | 10 | mptru 1384 | 1 ⊢ ~Q0 Er (ω × N) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1375 ⊤wtru 1376 ∃wex 1518 ∈ wcel 2180 〈cop 3649 class class class wbr 4062 ωcom 4659 × cxp 4694 Rel wrel 4701 (class class class)co 5974 ·o comu 6530 Er wer 6647 Ncnpi 7427 ~Q0 ceq0 7441 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-id 4361 df-iord 4434 df-on 4436 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-recs 6421 df-irdg 6486 df-oadd 6536 df-omul 6537 df-er 6650 df-ni 7459 df-enq0 7579 |
| This theorem is referenced by: enq0eceq 7592 nqnq0pi 7593 mulcanenq0ec 7600 nnnq0lem1 7601 addnq0mo 7602 mulnq0mo 7603 |
| Copyright terms: Public domain | W3C validator |