![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > enq0er | GIF version |
Description: The equivalence relation for nonnegative fractions is an equivalence relation. (Contributed by Jim Kingdon, 12-Nov-2019.) |
Ref | Expression |
---|---|
enq0er | ⊢ ~Q0 Er (ω × N) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-enq0 7486 | . . . . 5 ⊢ ~Q0 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)))} | |
2 | 1 | relopabi 4788 | . . . 4 ⊢ Rel ~Q0 |
3 | 2 | a1i 9 | . . 3 ⊢ (⊤ → Rel ~Q0 ) |
4 | enq0sym 7494 | . . . 4 ⊢ (𝑓 ~Q0 𝑔 → 𝑔 ~Q0 𝑓) | |
5 | 4 | adantl 277 | . . 3 ⊢ ((⊤ ∧ 𝑓 ~Q0 𝑔) → 𝑔 ~Q0 𝑓) |
6 | enq0tr 7496 | . . . 4 ⊢ ((𝑓 ~Q0 𝑔 ∧ 𝑔 ~Q0 ℎ) → 𝑓 ~Q0 ℎ) | |
7 | 6 | adantl 277 | . . 3 ⊢ ((⊤ ∧ (𝑓 ~Q0 𝑔 ∧ 𝑔 ~Q0 ℎ)) → 𝑓 ~Q0 ℎ) |
8 | enq0ref 7495 | . . . 4 ⊢ (𝑓 ∈ (ω × N) ↔ 𝑓 ~Q0 𝑓) | |
9 | 8 | a1i 9 | . . 3 ⊢ (⊤ → (𝑓 ∈ (ω × N) ↔ 𝑓 ~Q0 𝑓)) |
10 | 3, 5, 7, 9 | iserd 6615 | . 2 ⊢ (⊤ → ~Q0 Er (ω × N)) |
11 | 10 | mptru 1373 | 1 ⊢ ~Q0 Er (ω × N) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1364 ⊤wtru 1365 ∃wex 1503 ∈ wcel 2164 〈cop 3622 class class class wbr 4030 ωcom 4623 × cxp 4658 Rel wrel 4665 (class class class)co 5919 ·o comu 6469 Er wer 6586 Ncnpi 7334 ~Q0 ceq0 7348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-iord 4398 df-on 4400 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-recs 6360 df-irdg 6425 df-oadd 6475 df-omul 6476 df-er 6589 df-ni 7366 df-enq0 7486 |
This theorem is referenced by: enq0eceq 7499 nqnq0pi 7500 mulcanenq0ec 7507 nnnq0lem1 7508 addnq0mo 7509 mulnq0mo 7510 |
Copyright terms: Public domain | W3C validator |