Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > enq0er | GIF version |
Description: The equivalence relation for nonnegative fractions is an equivalence relation. (Contributed by Jim Kingdon, 12-Nov-2019.) |
Ref | Expression |
---|---|
enq0er | ⊢ ~Q0 Er (ω × N) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-enq0 7386 | . . . . 5 ⊢ ~Q0 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)))} | |
2 | 1 | relopabi 4737 | . . . 4 ⊢ Rel ~Q0 |
3 | 2 | a1i 9 | . . 3 ⊢ (⊤ → Rel ~Q0 ) |
4 | enq0sym 7394 | . . . 4 ⊢ (𝑓 ~Q0 𝑔 → 𝑔 ~Q0 𝑓) | |
5 | 4 | adantl 275 | . . 3 ⊢ ((⊤ ∧ 𝑓 ~Q0 𝑔) → 𝑔 ~Q0 𝑓) |
6 | enq0tr 7396 | . . . 4 ⊢ ((𝑓 ~Q0 𝑔 ∧ 𝑔 ~Q0 ℎ) → 𝑓 ~Q0 ℎ) | |
7 | 6 | adantl 275 | . . 3 ⊢ ((⊤ ∧ (𝑓 ~Q0 𝑔 ∧ 𝑔 ~Q0 ℎ)) → 𝑓 ~Q0 ℎ) |
8 | enq0ref 7395 | . . . 4 ⊢ (𝑓 ∈ (ω × N) ↔ 𝑓 ~Q0 𝑓) | |
9 | 8 | a1i 9 | . . 3 ⊢ (⊤ → (𝑓 ∈ (ω × N) ↔ 𝑓 ~Q0 𝑓)) |
10 | 3, 5, 7, 9 | iserd 6539 | . 2 ⊢ (⊤ → ~Q0 Er (ω × N)) |
11 | 10 | mptru 1357 | 1 ⊢ ~Q0 Er (ω × N) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 = wceq 1348 ⊤wtru 1349 ∃wex 1485 ∈ wcel 2141 〈cop 3586 class class class wbr 3989 ωcom 4574 × cxp 4609 Rel wrel 4616 (class class class)co 5853 ·o comu 6393 Er wer 6510 Ncnpi 7234 ~Q0 ceq0 7248 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-irdg 6349 df-oadd 6399 df-omul 6400 df-er 6513 df-ni 7266 df-enq0 7386 |
This theorem is referenced by: enq0eceq 7399 nqnq0pi 7400 mulcanenq0ec 7407 nnnq0lem1 7408 addnq0mo 7409 mulnq0mo 7410 |
Copyright terms: Public domain | W3C validator |