ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enq0ref GIF version

Theorem enq0ref 7395
Description: The equivalence relation for nonnegative fractions is reflexive. Lemma for enq0er 7397. (Contributed by Jim Kingdon, 14-Nov-2019.)
Assertion
Ref Expression
enq0ref (𝑓 ∈ (ω × N) ↔ 𝑓 ~Q0 𝑓)

Proof of Theorem enq0ref
Dummy variables 𝑢 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxpi 4627 . . . . . 6 (𝑓 ∈ (ω × N) → ∃𝑧𝑤(𝑓 = ⟨𝑧, 𝑤⟩ ∧ (𝑧 ∈ ω ∧ 𝑤N)))
2 elxpi 4627 . . . . . 6 (𝑓 ∈ (ω × N) → ∃𝑣𝑢(𝑓 = ⟨𝑣, 𝑢⟩ ∧ (𝑣 ∈ ω ∧ 𝑢N)))
3 ee4anv 1927 . . . . . 6 (∃𝑧𝑤𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ (𝑧 ∈ ω ∧ 𝑤N)) ∧ (𝑓 = ⟨𝑣, 𝑢⟩ ∧ (𝑣 ∈ ω ∧ 𝑢N))) ↔ (∃𝑧𝑤(𝑓 = ⟨𝑧, 𝑤⟩ ∧ (𝑧 ∈ ω ∧ 𝑤N)) ∧ ∃𝑣𝑢(𝑓 = ⟨𝑣, 𝑢⟩ ∧ (𝑣 ∈ ω ∧ 𝑢N))))
41, 2, 3sylanbrc 415 . . . . 5 (𝑓 ∈ (ω × N) → ∃𝑧𝑤𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ (𝑧 ∈ ω ∧ 𝑤N)) ∧ (𝑓 = ⟨𝑣, 𝑢⟩ ∧ (𝑣 ∈ ω ∧ 𝑢N))))
5 eqtr2 2189 . . . . . . . . . . . 12 ((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) → ⟨𝑧, 𝑤⟩ = ⟨𝑣, 𝑢⟩)
6 vex 2733 . . . . . . . . . . . . 13 𝑧 ∈ V
7 vex 2733 . . . . . . . . . . . . 13 𝑤 ∈ V
86, 7opth 4222 . . . . . . . . . . . 12 (⟨𝑧, 𝑤⟩ = ⟨𝑣, 𝑢⟩ ↔ (𝑧 = 𝑣𝑤 = 𝑢))
95, 8sylib 121 . . . . . . . . . . 11 ((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) → (𝑧 = 𝑣𝑤 = 𝑢))
10 oveq1 5860 . . . . . . . . . . . 12 (𝑧 = 𝑣 → (𝑧 ·o 𝑢) = (𝑣 ·o 𝑢))
11 oveq2 5861 . . . . . . . . . . . . 13 (𝑢 = 𝑤 → (𝑣 ·o 𝑢) = (𝑣 ·o 𝑤))
1211equcoms 1701 . . . . . . . . . . . 12 (𝑤 = 𝑢 → (𝑣 ·o 𝑢) = (𝑣 ·o 𝑤))
1310, 12sylan9eq 2223 . . . . . . . . . . 11 ((𝑧 = 𝑣𝑤 = 𝑢) → (𝑧 ·o 𝑢) = (𝑣 ·o 𝑤))
149, 13syl 14 . . . . . . . . . 10 ((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) → (𝑧 ·o 𝑢) = (𝑣 ·o 𝑤))
1514ancli 321 . . . . . . . . 9 ((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) → ((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑣 ·o 𝑤)))
1615ad2ant2r 506 . . . . . . . 8 (((𝑓 = ⟨𝑧, 𝑤⟩ ∧ (𝑧 ∈ ω ∧ 𝑤N)) ∧ (𝑓 = ⟨𝑣, 𝑢⟩ ∧ (𝑣 ∈ ω ∧ 𝑢N))) → ((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑣 ·o 𝑤)))
17 pinn 7271 . . . . . . . . . . . . . 14 (𝑤N𝑤 ∈ ω)
18 nnmcom 6468 . . . . . . . . . . . . . 14 ((𝑣 ∈ ω ∧ 𝑤 ∈ ω) → (𝑣 ·o 𝑤) = (𝑤 ·o 𝑣))
1917, 18sylan2 284 . . . . . . . . . . . . 13 ((𝑣 ∈ ω ∧ 𝑤N) → (𝑣 ·o 𝑤) = (𝑤 ·o 𝑣))
2019eqeq2d 2182 . . . . . . . . . . . 12 ((𝑣 ∈ ω ∧ 𝑤N) → ((𝑧 ·o 𝑢) = (𝑣 ·o 𝑤) ↔ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)))
2120ancoms 266 . . . . . . . . . . 11 ((𝑤N𝑣 ∈ ω) → ((𝑧 ·o 𝑢) = (𝑣 ·o 𝑤) ↔ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)))
2221ad2ant2lr 507 . . . . . . . . . 10 (((𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → ((𝑧 ·o 𝑢) = (𝑣 ·o 𝑤) ↔ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)))
2322ad2ant2l 505 . . . . . . . . 9 (((𝑓 = ⟨𝑧, 𝑤⟩ ∧ (𝑧 ∈ ω ∧ 𝑤N)) ∧ (𝑓 = ⟨𝑣, 𝑢⟩ ∧ (𝑣 ∈ ω ∧ 𝑢N))) → ((𝑧 ·o 𝑢) = (𝑣 ·o 𝑤) ↔ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)))
2423anbi2d 461 . . . . . . . 8 (((𝑓 = ⟨𝑧, 𝑤⟩ ∧ (𝑧 ∈ ω ∧ 𝑤N)) ∧ (𝑓 = ⟨𝑣, 𝑢⟩ ∧ (𝑣 ∈ ω ∧ 𝑢N))) → (((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑣 ·o 𝑤)) ↔ ((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))))
2516, 24mpbid 146 . . . . . . 7 (((𝑓 = ⟨𝑧, 𝑤⟩ ∧ (𝑧 ∈ ω ∧ 𝑤N)) ∧ (𝑓 = ⟨𝑣, 𝑢⟩ ∧ (𝑣 ∈ ω ∧ 𝑢N))) → ((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)))
26252eximi 1594 . . . . . 6 (∃𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ (𝑧 ∈ ω ∧ 𝑤N)) ∧ (𝑓 = ⟨𝑣, 𝑢⟩ ∧ (𝑣 ∈ ω ∧ 𝑢N))) → ∃𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)))
27262eximi 1594 . . . . 5 (∃𝑧𝑤𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ (𝑧 ∈ ω ∧ 𝑤N)) ∧ (𝑓 = ⟨𝑣, 𝑢⟩ ∧ (𝑣 ∈ ω ∧ 𝑢N))) → ∃𝑧𝑤𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)))
284, 27syl 14 . . . 4 (𝑓 ∈ (ω × N) → ∃𝑧𝑤𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)))
2928ancli 321 . . 3 (𝑓 ∈ (ω × N) → (𝑓 ∈ (ω × N) ∧ ∃𝑧𝑤𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))))
30 vex 2733 . . . . 5 𝑓 ∈ V
31 eleq1 2233 . . . . . . 7 (𝑥 = 𝑓 → (𝑥 ∈ (ω × N) ↔ 𝑓 ∈ (ω × N)))
3231anbi1d 462 . . . . . 6 (𝑥 = 𝑓 → ((𝑥 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ↔ (𝑓 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N))))
33 eqeq1 2177 . . . . . . . . 9 (𝑥 = 𝑓 → (𝑥 = ⟨𝑧, 𝑤⟩ ↔ 𝑓 = ⟨𝑧, 𝑤⟩))
3433anbi1d 462 . . . . . . . 8 (𝑥 = 𝑓 → ((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ↔ (𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩)))
3534anbi1d 462 . . . . . . 7 (𝑥 = 𝑓 → (((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)) ↔ ((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))))
36354exbidv 1863 . . . . . 6 (𝑥 = 𝑓 → (∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)) ↔ ∃𝑧𝑤𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))))
3732, 36anbi12d 470 . . . . 5 (𝑥 = 𝑓 → (((𝑥 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))) ↔ ((𝑓 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)))))
38 eleq1 2233 . . . . . . 7 (𝑦 = 𝑓 → (𝑦 ∈ (ω × N) ↔ 𝑓 ∈ (ω × N)))
3938anbi2d 461 . . . . . 6 (𝑦 = 𝑓 → ((𝑓 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ↔ (𝑓 ∈ (ω × N) ∧ 𝑓 ∈ (ω × N))))
40 eqeq1 2177 . . . . . . . . 9 (𝑦 = 𝑓 → (𝑦 = ⟨𝑣, 𝑢⟩ ↔ 𝑓 = ⟨𝑣, 𝑢⟩))
4140anbi2d 461 . . . . . . . 8 (𝑦 = 𝑓 → ((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ↔ (𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩)))
4241anbi1d 462 . . . . . . 7 (𝑦 = 𝑓 → (((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)) ↔ ((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))))
43424exbidv 1863 . . . . . 6 (𝑦 = 𝑓 → (∃𝑧𝑤𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)) ↔ ∃𝑧𝑤𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))))
4439, 43anbi12d 470 . . . . 5 (𝑦 = 𝑓 → (((𝑓 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))) ↔ ((𝑓 ∈ (ω × N) ∧ 𝑓 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)))))
45 df-enq0 7386 . . . . 5 ~Q0 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)))}
4630, 30, 37, 44, 45brab 4257 . . . 4 (𝑓 ~Q0 𝑓 ↔ ((𝑓 ∈ (ω × N) ∧ 𝑓 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))))
47 anidm 394 . . . . 5 ((𝑓 ∈ (ω × N) ∧ 𝑓 ∈ (ω × N)) ↔ 𝑓 ∈ (ω × N))
4847anbi1i 455 . . . 4 (((𝑓 ∈ (ω × N) ∧ 𝑓 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))) ↔ (𝑓 ∈ (ω × N) ∧ ∃𝑧𝑤𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))))
4946, 48bitri 183 . . 3 (𝑓 ~Q0 𝑓 ↔ (𝑓 ∈ (ω × N) ∧ ∃𝑧𝑤𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))))
5029, 49sylibr 133 . 2 (𝑓 ∈ (ω × N) → 𝑓 ~Q0 𝑓)
5149simplbi 272 . 2 (𝑓 ~Q0 𝑓𝑓 ∈ (ω × N))
5250, 51impbii 125 1 (𝑓 ∈ (ω × N) ↔ 𝑓 ~Q0 𝑓)
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104   = wceq 1348  wex 1485  wcel 2141  cop 3586   class class class wbr 3989  ωcom 4574   × cxp 4609  (class class class)co 5853   ·o comu 6393  Ncnpi 7234   ~Q0 ceq0 7248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-oadd 6399  df-omul 6400  df-ni 7266  df-enq0 7386
This theorem is referenced by:  enq0er  7397
  Copyright terms: Public domain W3C validator