ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enq0ref GIF version

Theorem enq0ref 7588
Description: The equivalence relation for nonnegative fractions is reflexive. Lemma for enq0er 7590. (Contributed by Jim Kingdon, 14-Nov-2019.)
Assertion
Ref Expression
enq0ref (𝑓 ∈ (ω × N) ↔ 𝑓 ~Q0 𝑓)

Proof of Theorem enq0ref
Dummy variables 𝑢 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxpi 4712 . . . . . 6 (𝑓 ∈ (ω × N) → ∃𝑧𝑤(𝑓 = ⟨𝑧, 𝑤⟩ ∧ (𝑧 ∈ ω ∧ 𝑤N)))
2 elxpi 4712 . . . . . 6 (𝑓 ∈ (ω × N) → ∃𝑣𝑢(𝑓 = ⟨𝑣, 𝑢⟩ ∧ (𝑣 ∈ ω ∧ 𝑢N)))
3 ee4anv 1965 . . . . . 6 (∃𝑧𝑤𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ (𝑧 ∈ ω ∧ 𝑤N)) ∧ (𝑓 = ⟨𝑣, 𝑢⟩ ∧ (𝑣 ∈ ω ∧ 𝑢N))) ↔ (∃𝑧𝑤(𝑓 = ⟨𝑧, 𝑤⟩ ∧ (𝑧 ∈ ω ∧ 𝑤N)) ∧ ∃𝑣𝑢(𝑓 = ⟨𝑣, 𝑢⟩ ∧ (𝑣 ∈ ω ∧ 𝑢N))))
41, 2, 3sylanbrc 417 . . . . 5 (𝑓 ∈ (ω × N) → ∃𝑧𝑤𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ (𝑧 ∈ ω ∧ 𝑤N)) ∧ (𝑓 = ⟨𝑣, 𝑢⟩ ∧ (𝑣 ∈ ω ∧ 𝑢N))))
5 eqtr2 2228 . . . . . . . . . . . 12 ((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) → ⟨𝑧, 𝑤⟩ = ⟨𝑣, 𝑢⟩)
6 vex 2782 . . . . . . . . . . . . 13 𝑧 ∈ V
7 vex 2782 . . . . . . . . . . . . 13 𝑤 ∈ V
86, 7opth 4302 . . . . . . . . . . . 12 (⟨𝑧, 𝑤⟩ = ⟨𝑣, 𝑢⟩ ↔ (𝑧 = 𝑣𝑤 = 𝑢))
95, 8sylib 122 . . . . . . . . . . 11 ((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) → (𝑧 = 𝑣𝑤 = 𝑢))
10 oveq1 5981 . . . . . . . . . . . 12 (𝑧 = 𝑣 → (𝑧 ·o 𝑢) = (𝑣 ·o 𝑢))
11 oveq2 5982 . . . . . . . . . . . . 13 (𝑢 = 𝑤 → (𝑣 ·o 𝑢) = (𝑣 ·o 𝑤))
1211equcoms 1734 . . . . . . . . . . . 12 (𝑤 = 𝑢 → (𝑣 ·o 𝑢) = (𝑣 ·o 𝑤))
1310, 12sylan9eq 2262 . . . . . . . . . . 11 ((𝑧 = 𝑣𝑤 = 𝑢) → (𝑧 ·o 𝑢) = (𝑣 ·o 𝑤))
149, 13syl 14 . . . . . . . . . 10 ((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) → (𝑧 ·o 𝑢) = (𝑣 ·o 𝑤))
1514ancli 323 . . . . . . . . 9 ((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) → ((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑣 ·o 𝑤)))
1615ad2ant2r 509 . . . . . . . 8 (((𝑓 = ⟨𝑧, 𝑤⟩ ∧ (𝑧 ∈ ω ∧ 𝑤N)) ∧ (𝑓 = ⟨𝑣, 𝑢⟩ ∧ (𝑣 ∈ ω ∧ 𝑢N))) → ((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑣 ·o 𝑤)))
17 pinn 7464 . . . . . . . . . . . . . 14 (𝑤N𝑤 ∈ ω)
18 nnmcom 6605 . . . . . . . . . . . . . 14 ((𝑣 ∈ ω ∧ 𝑤 ∈ ω) → (𝑣 ·o 𝑤) = (𝑤 ·o 𝑣))
1917, 18sylan2 286 . . . . . . . . . . . . 13 ((𝑣 ∈ ω ∧ 𝑤N) → (𝑣 ·o 𝑤) = (𝑤 ·o 𝑣))
2019eqeq2d 2221 . . . . . . . . . . . 12 ((𝑣 ∈ ω ∧ 𝑤N) → ((𝑧 ·o 𝑢) = (𝑣 ·o 𝑤) ↔ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)))
2120ancoms 268 . . . . . . . . . . 11 ((𝑤N𝑣 ∈ ω) → ((𝑧 ·o 𝑢) = (𝑣 ·o 𝑤) ↔ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)))
2221ad2ant2lr 510 . . . . . . . . . 10 (((𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → ((𝑧 ·o 𝑢) = (𝑣 ·o 𝑤) ↔ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)))
2322ad2ant2l 508 . . . . . . . . 9 (((𝑓 = ⟨𝑧, 𝑤⟩ ∧ (𝑧 ∈ ω ∧ 𝑤N)) ∧ (𝑓 = ⟨𝑣, 𝑢⟩ ∧ (𝑣 ∈ ω ∧ 𝑢N))) → ((𝑧 ·o 𝑢) = (𝑣 ·o 𝑤) ↔ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)))
2423anbi2d 464 . . . . . . . 8 (((𝑓 = ⟨𝑧, 𝑤⟩ ∧ (𝑧 ∈ ω ∧ 𝑤N)) ∧ (𝑓 = ⟨𝑣, 𝑢⟩ ∧ (𝑣 ∈ ω ∧ 𝑢N))) → (((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑣 ·o 𝑤)) ↔ ((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))))
2516, 24mpbid 147 . . . . . . 7 (((𝑓 = ⟨𝑧, 𝑤⟩ ∧ (𝑧 ∈ ω ∧ 𝑤N)) ∧ (𝑓 = ⟨𝑣, 𝑢⟩ ∧ (𝑣 ∈ ω ∧ 𝑢N))) → ((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)))
26252eximi 1627 . . . . . 6 (∃𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ (𝑧 ∈ ω ∧ 𝑤N)) ∧ (𝑓 = ⟨𝑣, 𝑢⟩ ∧ (𝑣 ∈ ω ∧ 𝑢N))) → ∃𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)))
27262eximi 1627 . . . . 5 (∃𝑧𝑤𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ (𝑧 ∈ ω ∧ 𝑤N)) ∧ (𝑓 = ⟨𝑣, 𝑢⟩ ∧ (𝑣 ∈ ω ∧ 𝑢N))) → ∃𝑧𝑤𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)))
284, 27syl 14 . . . 4 (𝑓 ∈ (ω × N) → ∃𝑧𝑤𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)))
2928ancli 323 . . 3 (𝑓 ∈ (ω × N) → (𝑓 ∈ (ω × N) ∧ ∃𝑧𝑤𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))))
30 vex 2782 . . . . 5 𝑓 ∈ V
31 eleq1 2272 . . . . . . 7 (𝑥 = 𝑓 → (𝑥 ∈ (ω × N) ↔ 𝑓 ∈ (ω × N)))
3231anbi1d 465 . . . . . 6 (𝑥 = 𝑓 → ((𝑥 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ↔ (𝑓 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N))))
33 eqeq1 2216 . . . . . . . . 9 (𝑥 = 𝑓 → (𝑥 = ⟨𝑧, 𝑤⟩ ↔ 𝑓 = ⟨𝑧, 𝑤⟩))
3433anbi1d 465 . . . . . . . 8 (𝑥 = 𝑓 → ((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ↔ (𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩)))
3534anbi1d 465 . . . . . . 7 (𝑥 = 𝑓 → (((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)) ↔ ((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))))
36354exbidv 1896 . . . . . 6 (𝑥 = 𝑓 → (∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)) ↔ ∃𝑧𝑤𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))))
3732, 36anbi12d 473 . . . . 5 (𝑥 = 𝑓 → (((𝑥 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))) ↔ ((𝑓 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)))))
38 eleq1 2272 . . . . . . 7 (𝑦 = 𝑓 → (𝑦 ∈ (ω × N) ↔ 𝑓 ∈ (ω × N)))
3938anbi2d 464 . . . . . 6 (𝑦 = 𝑓 → ((𝑓 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ↔ (𝑓 ∈ (ω × N) ∧ 𝑓 ∈ (ω × N))))
40 eqeq1 2216 . . . . . . . . 9 (𝑦 = 𝑓 → (𝑦 = ⟨𝑣, 𝑢⟩ ↔ 𝑓 = ⟨𝑣, 𝑢⟩))
4140anbi2d 464 . . . . . . . 8 (𝑦 = 𝑓 → ((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ↔ (𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩)))
4241anbi1d 465 . . . . . . 7 (𝑦 = 𝑓 → (((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)) ↔ ((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))))
43424exbidv 1896 . . . . . 6 (𝑦 = 𝑓 → (∃𝑧𝑤𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)) ↔ ∃𝑧𝑤𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))))
4439, 43anbi12d 473 . . . . 5 (𝑦 = 𝑓 → (((𝑓 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))) ↔ ((𝑓 ∈ (ω × N) ∧ 𝑓 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)))))
45 df-enq0 7579 . . . . 5 ~Q0 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)))}
4630, 30, 37, 44, 45brab 4340 . . . 4 (𝑓 ~Q0 𝑓 ↔ ((𝑓 ∈ (ω × N) ∧ 𝑓 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))))
47 anidm 396 . . . . 5 ((𝑓 ∈ (ω × N) ∧ 𝑓 ∈ (ω × N)) ↔ 𝑓 ∈ (ω × N))
4847anbi1i 458 . . . 4 (((𝑓 ∈ (ω × N) ∧ 𝑓 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))) ↔ (𝑓 ∈ (ω × N) ∧ ∃𝑧𝑤𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))))
4946, 48bitri 184 . . 3 (𝑓 ~Q0 𝑓 ↔ (𝑓 ∈ (ω × N) ∧ ∃𝑧𝑤𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))))
5029, 49sylibr 134 . 2 (𝑓 ∈ (ω × N) → 𝑓 ~Q0 𝑓)
5149simplbi 274 . 2 (𝑓 ~Q0 𝑓𝑓 ∈ (ω × N))
5250, 51impbii 126 1 (𝑓 ∈ (ω × N) ↔ 𝑓 ~Q0 𝑓)
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1375  wex 1518  wcel 2180  cop 3649   class class class wbr 4062  ωcom 4659   × cxp 4694  (class class class)co 5974   ·o comu 6530  Ncnpi 7427   ~Q0 ceq0 7441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-iord 4434  df-on 4436  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-irdg 6486  df-oadd 6536  df-omul 6537  df-ni 7459  df-enq0 7579
This theorem is referenced by:  enq0er  7590
  Copyright terms: Public domain W3C validator