ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enq0enq GIF version

Theorem enq0enq 7498
Description: Equivalence on positive fractions in terms of equivalence on nonnegative fractions. (Contributed by Jim Kingdon, 12-Nov-2019.)
Assertion
Ref Expression
enq0enq ~Q = ( ~Q0 ∩ ((N × N) × (N × N)))

Proof of Theorem enq0enq
Dummy variables 𝑣 𝑢 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-enq0 7491 . . 3 ~Q0 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)))}
2 df-xp 4669 . . 3 ((N × N) × (N × N)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N))}
31, 2ineq12i 3362 . 2 ( ~Q0 ∩ ((N × N) × (N × N))) = ({⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)))} ∩ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N))})
4 inopab 4798 . 2 ({⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)))} ∩ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N))}) = {⟨𝑥, 𝑦⟩ ∣ (((𝑥 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))) ∧ (𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)))}
5 an32 562 . . . . . 6 ((((𝑥 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))) ∧ (𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N))) ↔ (((𝑥 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ∧ (𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N))) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))))
6 an4 586 . . . . . . . 8 (((𝑥 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ∧ (𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N))) ↔ ((𝑥 ∈ (ω × N) ∧ 𝑥 ∈ (N × N)) ∧ (𝑦 ∈ (ω × N) ∧ 𝑦 ∈ (N × N))))
7 pinn 7376 . . . . . . . . . . . . 13 (𝑥N𝑥 ∈ ω)
87ssriv 3187 . . . . . . . . . . . 12 N ⊆ ω
9 xpss1 4773 . . . . . . . . . . . 12 (N ⊆ ω → (N × N) ⊆ (ω × N))
108, 9ax-mp 5 . . . . . . . . . . 11 (N × N) ⊆ (ω × N)
1110sseli 3179 . . . . . . . . . 10 (𝑥 ∈ (N × N) → 𝑥 ∈ (ω × N))
1211pm4.71ri 392 . . . . . . . . 9 (𝑥 ∈ (N × N) ↔ (𝑥 ∈ (ω × N) ∧ 𝑥 ∈ (N × N)))
1310sseli 3179 . . . . . . . . . 10 (𝑦 ∈ (N × N) → 𝑦 ∈ (ω × N))
1413pm4.71ri 392 . . . . . . . . 9 (𝑦 ∈ (N × N) ↔ (𝑦 ∈ (ω × N) ∧ 𝑦 ∈ (N × N)))
1512, 14anbi12i 460 . . . . . . . 8 ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ↔ ((𝑥 ∈ (ω × N) ∧ 𝑥 ∈ (N × N)) ∧ (𝑦 ∈ (ω × N) ∧ 𝑦 ∈ (N × N))))
166, 15bitr4i 187 . . . . . . 7 (((𝑥 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ∧ (𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N))) ↔ (𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)))
1716anbi1i 458 . . . . . 6 ((((𝑥 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ∧ (𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N))) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))) ↔ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))))
185, 17bitri 184 . . . . 5 ((((𝑥 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))) ∧ (𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N))) ↔ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))))
19 eleq1 2259 . . . . . . . . . . . . . . . . . . 19 (𝑥 = ⟨𝑧, 𝑤⟩ → (𝑥 ∈ (N × N) ↔ ⟨𝑧, 𝑤⟩ ∈ (N × N)))
20 opelxp 4693 . . . . . . . . . . . . . . . . . . 19 (⟨𝑧, 𝑤⟩ ∈ (N × N) ↔ (𝑧N𝑤N))
2119, 20bitrdi 196 . . . . . . . . . . . . . . . . . 18 (𝑥 = ⟨𝑧, 𝑤⟩ → (𝑥 ∈ (N × N) ↔ (𝑧N𝑤N)))
22 eleq1 2259 . . . . . . . . . . . . . . . . . . 19 (𝑦 = ⟨𝑣, 𝑢⟩ → (𝑦 ∈ (N × N) ↔ ⟨𝑣, 𝑢⟩ ∈ (N × N)))
23 opelxp 4693 . . . . . . . . . . . . . . . . . . 19 (⟨𝑣, 𝑢⟩ ∈ (N × N) ↔ (𝑣N𝑢N))
2422, 23bitrdi 196 . . . . . . . . . . . . . . . . . 18 (𝑦 = ⟨𝑣, 𝑢⟩ → (𝑦 ∈ (N × N) ↔ (𝑣N𝑢N)))
2521, 24bi2anan9 606 . . . . . . . . . . . . . . . . 17 ((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) → ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ↔ ((𝑧N𝑤N) ∧ (𝑣N𝑢N))))
2625pm5.32i 454 . . . . . . . . . . . . . . . 16 (((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N))) ↔ ((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ ((𝑧N𝑤N) ∧ (𝑣N𝑢N))))
2726anbi1i 458 . . . . . . . . . . . . . . 15 ((((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N))) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)) ↔ (((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ ((𝑧N𝑤N) ∧ (𝑣N𝑢N))) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)))
28 anass 401 . . . . . . . . . . . . . . 15 ((((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ ((𝑧N𝑤N) ∧ (𝑣N𝑢N))) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)) ↔ ((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))))
2927, 28bitri 184 . . . . . . . . . . . . . 14 ((((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N))) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)) ↔ ((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))))
30 mulpiord 7384 . . . . . . . . . . . . . . . . . 18 ((𝑧N𝑢N) → (𝑧 ·N 𝑢) = (𝑧 ·o 𝑢))
31 mulpiord 7384 . . . . . . . . . . . . . . . . . 18 ((𝑤N𝑣N) → (𝑤 ·N 𝑣) = (𝑤 ·o 𝑣))
3230, 31eqeqan12d 2212 . . . . . . . . . . . . . . . . 17 (((𝑧N𝑢N) ∧ (𝑤N𝑣N)) → ((𝑧 ·N 𝑢) = (𝑤 ·N 𝑣) ↔ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)))
3332an42s 589 . . . . . . . . . . . . . . . 16 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑧 ·N 𝑢) = (𝑤 ·N 𝑣) ↔ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)))
3433pm5.32i 454 . . . . . . . . . . . . . . 15 ((((𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣)) ↔ (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)))
3534anbi2i 457 . . . . . . . . . . . . . 14 (((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣))) ↔ ((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))))
3629, 35bitr4i 187 . . . . . . . . . . . . 13 ((((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N))) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)) ↔ ((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣))))
37 anass 401 . . . . . . . . . . . . 13 ((((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ ((𝑧N𝑤N) ∧ (𝑣N𝑢N))) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣)) ↔ ((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣))))
3836, 37bitr4i 187 . . . . . . . . . . . 12 ((((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N))) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)) ↔ (((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ ((𝑧N𝑤N) ∧ (𝑣N𝑢N))) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣)))
3926anbi1i 458 . . . . . . . . . . . 12 ((((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N))) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣)) ↔ (((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ ((𝑧N𝑤N) ∧ (𝑣N𝑢N))) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣)))
4038, 39bitr4i 187 . . . . . . . . . . 11 ((((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N))) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)) ↔ (((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N))) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣)))
41 ancom 266 . . . . . . . . . . . 12 (((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N))) ↔ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ (𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩)))
4241anbi1i 458 . . . . . . . . . . 11 ((((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N))) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)) ↔ (((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ (𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩)) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)))
4341anbi1i 458 . . . . . . . . . . 11 ((((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N))) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣)) ↔ (((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ (𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩)) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣)))
4440, 42, 433bitr3i 210 . . . . . . . . . 10 ((((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ (𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩)) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)) ↔ (((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ (𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩)) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣)))
45 anass 401 . . . . . . . . . 10 ((((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ (𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩)) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)) ↔ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))))
46 anass 401 . . . . . . . . . 10 ((((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ (𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩)) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣)) ↔ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣))))
4744, 45, 463bitr3i 210 . . . . . . . . 9 (((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))) ↔ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣))))
48472exbii 1620 . . . . . . . 8 (∃𝑣𝑢((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))) ↔ ∃𝑣𝑢((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣))))
49 19.42vv 1926 . . . . . . . 8 (∃𝑣𝑢((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))) ↔ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))))
50 19.42vv 1926 . . . . . . . 8 (∃𝑣𝑢((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣))) ↔ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣))))
5148, 49, 503bitr3i 210 . . . . . . 7 (((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))) ↔ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣))))
52512exbii 1620 . . . . . 6 (∃𝑧𝑤((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))) ↔ ∃𝑧𝑤((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣))))
53 19.42vv 1926 . . . . . 6 (∃𝑧𝑤((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))) ↔ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))))
54 19.42vv 1926 . . . . . 6 (∃𝑧𝑤((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣))) ↔ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣))))
5552, 53, 543bitr3i 210 . . . . 5 (((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))) ↔ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣))))
5618, 55bitri 184 . . . 4 ((((𝑥 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))) ∧ (𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N))) ↔ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣))))
5756opabbii 4100 . . 3 {⟨𝑥, 𝑦⟩ ∣ (((𝑥 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))) ∧ (𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣)))}
58 df-enq 7414 . . 3 ~Q = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣)))}
5957, 58eqtr4i 2220 . 2 {⟨𝑥, 𝑦⟩ ∣ (((𝑥 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))) ∧ (𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)))} = ~Q
603, 4, 593eqtrri 2222 1 ~Q = ( ~Q0 ∩ ((N × N) × (N × N)))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1364  wex 1506  wcel 2167  cin 3156  wss 3157  cop 3625  {copab 4093  ωcom 4626   × cxp 4661  (class class class)co 5922   ·o comu 6472  Ncnpi 7339   ·N cmi 7341   ~Q ceq 7346   ~Q0 ceq0 7353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-xp 4669  df-rel 4670  df-res 4675  df-iota 5219  df-fv 5266  df-ov 5925  df-ni 7371  df-mi 7373  df-enq 7414  df-enq0 7491
This theorem is referenced by:  nqnq0pi  7505
  Copyright terms: Public domain W3C validator