ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enq0enq GIF version

Theorem enq0enq 7393
Description: Equivalence on positive fractions in terms of equivalence on nonnegative fractions. (Contributed by Jim Kingdon, 12-Nov-2019.)
Assertion
Ref Expression
enq0enq ~Q = ( ~Q0 ∩ ((N × N) × (N × N)))

Proof of Theorem enq0enq
Dummy variables 𝑣 𝑢 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-enq0 7386 . . 3 ~Q0 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)))}
2 df-xp 4617 . . 3 ((N × N) × (N × N)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N))}
31, 2ineq12i 3326 . 2 ( ~Q0 ∩ ((N × N) × (N × N))) = ({⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)))} ∩ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N))})
4 inopab 4743 . 2 ({⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)))} ∩ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N))}) = {⟨𝑥, 𝑦⟩ ∣ (((𝑥 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))) ∧ (𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)))}
5 an32 557 . . . . . 6 ((((𝑥 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))) ∧ (𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N))) ↔ (((𝑥 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ∧ (𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N))) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))))
6 an4 581 . . . . . . . 8 (((𝑥 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ∧ (𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N))) ↔ ((𝑥 ∈ (ω × N) ∧ 𝑥 ∈ (N × N)) ∧ (𝑦 ∈ (ω × N) ∧ 𝑦 ∈ (N × N))))
7 pinn 7271 . . . . . . . . . . . . 13 (𝑥N𝑥 ∈ ω)
87ssriv 3151 . . . . . . . . . . . 12 N ⊆ ω
9 xpss1 4721 . . . . . . . . . . . 12 (N ⊆ ω → (N × N) ⊆ (ω × N))
108, 9ax-mp 5 . . . . . . . . . . 11 (N × N) ⊆ (ω × N)
1110sseli 3143 . . . . . . . . . 10 (𝑥 ∈ (N × N) → 𝑥 ∈ (ω × N))
1211pm4.71ri 390 . . . . . . . . 9 (𝑥 ∈ (N × N) ↔ (𝑥 ∈ (ω × N) ∧ 𝑥 ∈ (N × N)))
1310sseli 3143 . . . . . . . . . 10 (𝑦 ∈ (N × N) → 𝑦 ∈ (ω × N))
1413pm4.71ri 390 . . . . . . . . 9 (𝑦 ∈ (N × N) ↔ (𝑦 ∈ (ω × N) ∧ 𝑦 ∈ (N × N)))
1512, 14anbi12i 457 . . . . . . . 8 ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ↔ ((𝑥 ∈ (ω × N) ∧ 𝑥 ∈ (N × N)) ∧ (𝑦 ∈ (ω × N) ∧ 𝑦 ∈ (N × N))))
166, 15bitr4i 186 . . . . . . 7 (((𝑥 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ∧ (𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N))) ↔ (𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)))
1716anbi1i 455 . . . . . 6 ((((𝑥 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ∧ (𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N))) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))) ↔ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))))
185, 17bitri 183 . . . . 5 ((((𝑥 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))) ∧ (𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N))) ↔ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))))
19 eleq1 2233 . . . . . . . . . . . . . . . . . . 19 (𝑥 = ⟨𝑧, 𝑤⟩ → (𝑥 ∈ (N × N) ↔ ⟨𝑧, 𝑤⟩ ∈ (N × N)))
20 opelxp 4641 . . . . . . . . . . . . . . . . . . 19 (⟨𝑧, 𝑤⟩ ∈ (N × N) ↔ (𝑧N𝑤N))
2119, 20bitrdi 195 . . . . . . . . . . . . . . . . . 18 (𝑥 = ⟨𝑧, 𝑤⟩ → (𝑥 ∈ (N × N) ↔ (𝑧N𝑤N)))
22 eleq1 2233 . . . . . . . . . . . . . . . . . . 19 (𝑦 = ⟨𝑣, 𝑢⟩ → (𝑦 ∈ (N × N) ↔ ⟨𝑣, 𝑢⟩ ∈ (N × N)))
23 opelxp 4641 . . . . . . . . . . . . . . . . . . 19 (⟨𝑣, 𝑢⟩ ∈ (N × N) ↔ (𝑣N𝑢N))
2422, 23bitrdi 195 . . . . . . . . . . . . . . . . . 18 (𝑦 = ⟨𝑣, 𝑢⟩ → (𝑦 ∈ (N × N) ↔ (𝑣N𝑢N)))
2521, 24bi2anan9 601 . . . . . . . . . . . . . . . . 17 ((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) → ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ↔ ((𝑧N𝑤N) ∧ (𝑣N𝑢N))))
2625pm5.32i 451 . . . . . . . . . . . . . . . 16 (((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N))) ↔ ((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ ((𝑧N𝑤N) ∧ (𝑣N𝑢N))))
2726anbi1i 455 . . . . . . . . . . . . . . 15 ((((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N))) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)) ↔ (((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ ((𝑧N𝑤N) ∧ (𝑣N𝑢N))) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)))
28 anass 399 . . . . . . . . . . . . . . 15 ((((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ ((𝑧N𝑤N) ∧ (𝑣N𝑢N))) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)) ↔ ((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))))
2927, 28bitri 183 . . . . . . . . . . . . . 14 ((((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N))) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)) ↔ ((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))))
30 mulpiord 7279 . . . . . . . . . . . . . . . . . 18 ((𝑧N𝑢N) → (𝑧 ·N 𝑢) = (𝑧 ·o 𝑢))
31 mulpiord 7279 . . . . . . . . . . . . . . . . . 18 ((𝑤N𝑣N) → (𝑤 ·N 𝑣) = (𝑤 ·o 𝑣))
3230, 31eqeqan12d 2186 . . . . . . . . . . . . . . . . 17 (((𝑧N𝑢N) ∧ (𝑤N𝑣N)) → ((𝑧 ·N 𝑢) = (𝑤 ·N 𝑣) ↔ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)))
3332an42s 584 . . . . . . . . . . . . . . . 16 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑧 ·N 𝑢) = (𝑤 ·N 𝑣) ↔ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)))
3433pm5.32i 451 . . . . . . . . . . . . . . 15 ((((𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣)) ↔ (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)))
3534anbi2i 454 . . . . . . . . . . . . . 14 (((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣))) ↔ ((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))))
3629, 35bitr4i 186 . . . . . . . . . . . . 13 ((((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N))) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)) ↔ ((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣))))
37 anass 399 . . . . . . . . . . . . 13 ((((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ ((𝑧N𝑤N) ∧ (𝑣N𝑢N))) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣)) ↔ ((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣))))
3836, 37bitr4i 186 . . . . . . . . . . . 12 ((((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N))) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)) ↔ (((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ ((𝑧N𝑤N) ∧ (𝑣N𝑢N))) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣)))
3926anbi1i 455 . . . . . . . . . . . 12 ((((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N))) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣)) ↔ (((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ ((𝑧N𝑤N) ∧ (𝑣N𝑢N))) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣)))
4038, 39bitr4i 186 . . . . . . . . . . 11 ((((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N))) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)) ↔ (((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N))) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣)))
41 ancom 264 . . . . . . . . . . . 12 (((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N))) ↔ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ (𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩)))
4241anbi1i 455 . . . . . . . . . . 11 ((((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N))) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)) ↔ (((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ (𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩)) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)))
4341anbi1i 455 . . . . . . . . . . 11 ((((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N))) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣)) ↔ (((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ (𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩)) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣)))
4440, 42, 433bitr3i 209 . . . . . . . . . 10 ((((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ (𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩)) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)) ↔ (((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ (𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩)) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣)))
45 anass 399 . . . . . . . . . 10 ((((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ (𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩)) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)) ↔ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))))
46 anass 399 . . . . . . . . . 10 ((((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ (𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩)) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣)) ↔ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣))))
4744, 45, 463bitr3i 209 . . . . . . . . 9 (((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))) ↔ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣))))
48472exbii 1599 . . . . . . . 8 (∃𝑣𝑢((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))) ↔ ∃𝑣𝑢((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣))))
49 19.42vv 1904 . . . . . . . 8 (∃𝑣𝑢((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))) ↔ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))))
50 19.42vv 1904 . . . . . . . 8 (∃𝑣𝑢((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣))) ↔ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣))))
5148, 49, 503bitr3i 209 . . . . . . 7 (((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))) ↔ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣))))
52512exbii 1599 . . . . . 6 (∃𝑧𝑤((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))) ↔ ∃𝑧𝑤((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣))))
53 19.42vv 1904 . . . . . 6 (∃𝑧𝑤((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))) ↔ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))))
54 19.42vv 1904 . . . . . 6 (∃𝑧𝑤((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣))) ↔ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣))))
5552, 53, 543bitr3i 209 . . . . 5 (((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))) ↔ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣))))
5618, 55bitri 183 . . . 4 ((((𝑥 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))) ∧ (𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N))) ↔ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣))))
5756opabbii 4056 . . 3 {⟨𝑥, 𝑦⟩ ∣ (((𝑥 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))) ∧ (𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣)))}
58 df-enq 7309 . . 3 ~Q = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣)))}
5957, 58eqtr4i 2194 . 2 {⟨𝑥, 𝑦⟩ ∣ (((𝑥 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))) ∧ (𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)))} = ~Q
603, 4, 593eqtrri 2196 1 ~Q = ( ~Q0 ∩ ((N × N) × (N × N)))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104   = wceq 1348  wex 1485  wcel 2141  cin 3120  wss 3121  cop 3586  {copab 4049  ωcom 4574   × cxp 4609  (class class class)co 5853   ·o comu 6393  Ncnpi 7234   ·N cmi 7236   ~Q ceq 7241   ~Q0 ceq0 7248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-xp 4617  df-rel 4618  df-res 4623  df-iota 5160  df-fv 5206  df-ov 5856  df-ni 7266  df-mi 7268  df-enq 7309  df-enq0 7386
This theorem is referenced by:  nqnq0pi  7400
  Copyright terms: Public domain W3C validator