ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enq0sym GIF version

Theorem enq0sym 7422
Description: The equivalence relation for nonnegative fractions is symmetric. Lemma for enq0er 7425. (Contributed by Jim Kingdon, 14-Nov-2019.)
Assertion
Ref Expression
enq0sym (𝑓 ~Q0 𝑔𝑔 ~Q0 𝑓)

Proof of Theorem enq0sym
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑢 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2740 . . . . . . . 8 𝑓 ∈ V
2 vex 2740 . . . . . . . 8 𝑔 ∈ V
3 eleq1 2240 . . . . . . . . . 10 (𝑥 = 𝑓 → (𝑥 ∈ (ω × N) ↔ 𝑓 ∈ (ω × N)))
43anbi1d 465 . . . . . . . . 9 (𝑥 = 𝑓 → ((𝑥 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ↔ (𝑓 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N))))
5 eqeq1 2184 . . . . . . . . . . . 12 (𝑥 = 𝑓 → (𝑥 = ⟨𝑧, 𝑤⟩ ↔ 𝑓 = ⟨𝑧, 𝑤⟩))
65anbi1d 465 . . . . . . . . . . 11 (𝑥 = 𝑓 → ((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ↔ (𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩)))
76anbi1d 465 . . . . . . . . . 10 (𝑥 = 𝑓 → (((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)) ↔ ((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))))
874exbidv 1870 . . . . . . . . 9 (𝑥 = 𝑓 → (∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)) ↔ ∃𝑧𝑤𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))))
94, 8anbi12d 473 . . . . . . . 8 (𝑥 = 𝑓 → (((𝑥 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))) ↔ ((𝑓 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)))))
10 eleq1 2240 . . . . . . . . . 10 (𝑦 = 𝑔 → (𝑦 ∈ (ω × N) ↔ 𝑔 ∈ (ω × N)))
1110anbi2d 464 . . . . . . . . 9 (𝑦 = 𝑔 → ((𝑓 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ↔ (𝑓 ∈ (ω × N) ∧ 𝑔 ∈ (ω × N))))
12 eqeq1 2184 . . . . . . . . . . . 12 (𝑦 = 𝑔 → (𝑦 = ⟨𝑣, 𝑢⟩ ↔ 𝑔 = ⟨𝑣, 𝑢⟩))
1312anbi2d 464 . . . . . . . . . . 11 (𝑦 = 𝑔 → ((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ↔ (𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑔 = ⟨𝑣, 𝑢⟩)))
1413anbi1d 465 . . . . . . . . . 10 (𝑦 = 𝑔 → (((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)) ↔ ((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑔 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))))
15144exbidv 1870 . . . . . . . . 9 (𝑦 = 𝑔 → (∃𝑧𝑤𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)) ↔ ∃𝑧𝑤𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑔 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))))
1611, 15anbi12d 473 . . . . . . . 8 (𝑦 = 𝑔 → (((𝑓 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))) ↔ ((𝑓 ∈ (ω × N) ∧ 𝑔 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑔 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)))))
17 df-enq0 7414 . . . . . . . 8 ~Q0 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)))}
181, 2, 9, 16, 17brab 4269 . . . . . . 7 (𝑓 ~Q0 𝑔 ↔ ((𝑓 ∈ (ω × N) ∧ 𝑔 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑔 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))))
1918biimpi 120 . . . . . 6 (𝑓 ~Q0 𝑔 → ((𝑓 ∈ (ω × N) ∧ 𝑔 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑔 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))))
20 opeq12 3778 . . . . . . . . . . 11 ((𝑧 = 𝑎𝑤 = 𝑏) → ⟨𝑧, 𝑤⟩ = ⟨𝑎, 𝑏⟩)
2120eqeq2d 2189 . . . . . . . . . 10 ((𝑧 = 𝑎𝑤 = 𝑏) → (𝑓 = ⟨𝑧, 𝑤⟩ ↔ 𝑓 = ⟨𝑎, 𝑏⟩))
2221anbi1d 465 . . . . . . . . 9 ((𝑧 = 𝑎𝑤 = 𝑏) → ((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑔 = ⟨𝑣, 𝑢⟩) ↔ (𝑓 = ⟨𝑎, 𝑏⟩ ∧ 𝑔 = ⟨𝑣, 𝑢⟩)))
23 simpl 109 . . . . . . . . . . 11 ((𝑧 = 𝑎𝑤 = 𝑏) → 𝑧 = 𝑎)
2423oveq1d 5884 . . . . . . . . . 10 ((𝑧 = 𝑎𝑤 = 𝑏) → (𝑧 ·o 𝑢) = (𝑎 ·o 𝑢))
25 simpr 110 . . . . . . . . . . 11 ((𝑧 = 𝑎𝑤 = 𝑏) → 𝑤 = 𝑏)
2625oveq1d 5884 . . . . . . . . . 10 ((𝑧 = 𝑎𝑤 = 𝑏) → (𝑤 ·o 𝑣) = (𝑏 ·o 𝑣))
2724, 26eqeq12d 2192 . . . . . . . . 9 ((𝑧 = 𝑎𝑤 = 𝑏) → ((𝑧 ·o 𝑢) = (𝑤 ·o 𝑣) ↔ (𝑎 ·o 𝑢) = (𝑏 ·o 𝑣)))
2822, 27anbi12d 473 . . . . . . . 8 ((𝑧 = 𝑎𝑤 = 𝑏) → (((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑔 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)) ↔ ((𝑓 = ⟨𝑎, 𝑏⟩ ∧ 𝑔 = ⟨𝑣, 𝑢⟩) ∧ (𝑎 ·o 𝑢) = (𝑏 ·o 𝑣))))
29 opeq12 3778 . . . . . . . . . . 11 ((𝑣 = 𝑐𝑢 = 𝑑) → ⟨𝑣, 𝑢⟩ = ⟨𝑐, 𝑑⟩)
3029eqeq2d 2189 . . . . . . . . . 10 ((𝑣 = 𝑐𝑢 = 𝑑) → (𝑔 = ⟨𝑣, 𝑢⟩ ↔ 𝑔 = ⟨𝑐, 𝑑⟩))
3130anbi2d 464 . . . . . . . . 9 ((𝑣 = 𝑐𝑢 = 𝑑) → ((𝑓 = ⟨𝑎, 𝑏⟩ ∧ 𝑔 = ⟨𝑣, 𝑢⟩) ↔ (𝑓 = ⟨𝑎, 𝑏⟩ ∧ 𝑔 = ⟨𝑐, 𝑑⟩)))
32 simpr 110 . . . . . . . . . . 11 ((𝑣 = 𝑐𝑢 = 𝑑) → 𝑢 = 𝑑)
3332oveq2d 5885 . . . . . . . . . 10 ((𝑣 = 𝑐𝑢 = 𝑑) → (𝑎 ·o 𝑢) = (𝑎 ·o 𝑑))
34 simpl 109 . . . . . . . . . . 11 ((𝑣 = 𝑐𝑢 = 𝑑) → 𝑣 = 𝑐)
3534oveq2d 5885 . . . . . . . . . 10 ((𝑣 = 𝑐𝑢 = 𝑑) → (𝑏 ·o 𝑣) = (𝑏 ·o 𝑐))
3633, 35eqeq12d 2192 . . . . . . . . 9 ((𝑣 = 𝑐𝑢 = 𝑑) → ((𝑎 ·o 𝑢) = (𝑏 ·o 𝑣) ↔ (𝑎 ·o 𝑑) = (𝑏 ·o 𝑐)))
3731, 36anbi12d 473 . . . . . . . 8 ((𝑣 = 𝑐𝑢 = 𝑑) → (((𝑓 = ⟨𝑎, 𝑏⟩ ∧ 𝑔 = ⟨𝑣, 𝑢⟩) ∧ (𝑎 ·o 𝑢) = (𝑏 ·o 𝑣)) ↔ ((𝑓 = ⟨𝑎, 𝑏⟩ ∧ 𝑔 = ⟨𝑐, 𝑑⟩) ∧ (𝑎 ·o 𝑑) = (𝑏 ·o 𝑐))))
3828, 37cbvex4v 1930 . . . . . . 7 (∃𝑧𝑤𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑔 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)) ↔ ∃𝑎𝑏𝑐𝑑((𝑓 = ⟨𝑎, 𝑏⟩ ∧ 𝑔 = ⟨𝑐, 𝑑⟩) ∧ (𝑎 ·o 𝑑) = (𝑏 ·o 𝑐)))
3938anbi2i 457 . . . . . 6 (((𝑓 ∈ (ω × N) ∧ 𝑔 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑓 = ⟨𝑧, 𝑤⟩ ∧ 𝑔 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))) ↔ ((𝑓 ∈ (ω × N) ∧ 𝑔 ∈ (ω × N)) ∧ ∃𝑎𝑏𝑐𝑑((𝑓 = ⟨𝑎, 𝑏⟩ ∧ 𝑔 = ⟨𝑐, 𝑑⟩) ∧ (𝑎 ·o 𝑑) = (𝑏 ·o 𝑐))))
4019, 39sylib 122 . . . . 5 (𝑓 ~Q0 𝑔 → ((𝑓 ∈ (ω × N) ∧ 𝑔 ∈ (ω × N)) ∧ ∃𝑎𝑏𝑐𝑑((𝑓 = ⟨𝑎, 𝑏⟩ ∧ 𝑔 = ⟨𝑐, 𝑑⟩) ∧ (𝑎 ·o 𝑑) = (𝑏 ·o 𝑐))))
41 19.42vv 1911 . . . . 5 (∃𝑎𝑏((𝑓 ∈ (ω × N) ∧ 𝑔 ∈ (ω × N)) ∧ ∃𝑐𝑑((𝑓 = ⟨𝑎, 𝑏⟩ ∧ 𝑔 = ⟨𝑐, 𝑑⟩) ∧ (𝑎 ·o 𝑑) = (𝑏 ·o 𝑐))) ↔ ((𝑓 ∈ (ω × N) ∧ 𝑔 ∈ (ω × N)) ∧ ∃𝑎𝑏𝑐𝑑((𝑓 = ⟨𝑎, 𝑏⟩ ∧ 𝑔 = ⟨𝑐, 𝑑⟩) ∧ (𝑎 ·o 𝑑) = (𝑏 ·o 𝑐))))
4240, 41sylibr 134 . . . 4 (𝑓 ~Q0 𝑔 → ∃𝑎𝑏((𝑓 ∈ (ω × N) ∧ 𝑔 ∈ (ω × N)) ∧ ∃𝑐𝑑((𝑓 = ⟨𝑎, 𝑏⟩ ∧ 𝑔 = ⟨𝑐, 𝑑⟩) ∧ (𝑎 ·o 𝑑) = (𝑏 ·o 𝑐))))
43 19.42vv 1911 . . . . 5 (∃𝑐𝑑((𝑓 ∈ (ω × N) ∧ 𝑔 ∈ (ω × N)) ∧ ((𝑓 = ⟨𝑎, 𝑏⟩ ∧ 𝑔 = ⟨𝑐, 𝑑⟩) ∧ (𝑎 ·o 𝑑) = (𝑏 ·o 𝑐))) ↔ ((𝑓 ∈ (ω × N) ∧ 𝑔 ∈ (ω × N)) ∧ ∃𝑐𝑑((𝑓 = ⟨𝑎, 𝑏⟩ ∧ 𝑔 = ⟨𝑐, 𝑑⟩) ∧ (𝑎 ·o 𝑑) = (𝑏 ·o 𝑐))))
44432exbii 1606 . . . 4 (∃𝑎𝑏𝑐𝑑((𝑓 ∈ (ω × N) ∧ 𝑔 ∈ (ω × N)) ∧ ((𝑓 = ⟨𝑎, 𝑏⟩ ∧ 𝑔 = ⟨𝑐, 𝑑⟩) ∧ (𝑎 ·o 𝑑) = (𝑏 ·o 𝑐))) ↔ ∃𝑎𝑏((𝑓 ∈ (ω × N) ∧ 𝑔 ∈ (ω × N)) ∧ ∃𝑐𝑑((𝑓 = ⟨𝑎, 𝑏⟩ ∧ 𝑔 = ⟨𝑐, 𝑑⟩) ∧ (𝑎 ·o 𝑑) = (𝑏 ·o 𝑐))))
4542, 44sylibr 134 . . 3 (𝑓 ~Q0 𝑔 → ∃𝑎𝑏𝑐𝑑((𝑓 ∈ (ω × N) ∧ 𝑔 ∈ (ω × N)) ∧ ((𝑓 = ⟨𝑎, 𝑏⟩ ∧ 𝑔 = ⟨𝑐, 𝑑⟩) ∧ (𝑎 ·o 𝑑) = (𝑏 ·o 𝑐))))
46 pm3.22 265 . . . . . . 7 ((𝑓 ∈ (ω × N) ∧ 𝑔 ∈ (ω × N)) → (𝑔 ∈ (ω × N) ∧ 𝑓 ∈ (ω × N)))
4746adantr 276 . . . . . 6 (((𝑓 ∈ (ω × N) ∧ 𝑔 ∈ (ω × N)) ∧ ((𝑓 = ⟨𝑎, 𝑏⟩ ∧ 𝑔 = ⟨𝑐, 𝑑⟩) ∧ (𝑎 ·o 𝑑) = (𝑏 ·o 𝑐))) → (𝑔 ∈ (ω × N) ∧ 𝑓 ∈ (ω × N)))
48 pm3.22 265 . . . . . . 7 ((𝑓 = ⟨𝑎, 𝑏⟩ ∧ 𝑔 = ⟨𝑐, 𝑑⟩) → (𝑔 = ⟨𝑐, 𝑑⟩ ∧ 𝑓 = ⟨𝑎, 𝑏⟩))
4948ad2antrl 490 . . . . . 6 (((𝑓 ∈ (ω × N) ∧ 𝑔 ∈ (ω × N)) ∧ ((𝑓 = ⟨𝑎, 𝑏⟩ ∧ 𝑔 = ⟨𝑐, 𝑑⟩) ∧ (𝑎 ·o 𝑑) = (𝑏 ·o 𝑐))) → (𝑔 = ⟨𝑐, 𝑑⟩ ∧ 𝑓 = ⟨𝑎, 𝑏⟩))
50 simprr 531 . . . . . . . 8 (((𝑓 ∈ (ω × N) ∧ 𝑔 ∈ (ω × N)) ∧ ((𝑓 = ⟨𝑎, 𝑏⟩ ∧ 𝑔 = ⟨𝑐, 𝑑⟩) ∧ (𝑎 ·o 𝑑) = (𝑏 ·o 𝑐))) → (𝑎 ·o 𝑑) = (𝑏 ·o 𝑐))
51 eleq1 2240 . . . . . . . . . . . . . 14 (𝑓 = ⟨𝑎, 𝑏⟩ → (𝑓 ∈ (ω × N) ↔ ⟨𝑎, 𝑏⟩ ∈ (ω × N)))
52 opelxp 4653 . . . . . . . . . . . . . 14 (⟨𝑎, 𝑏⟩ ∈ (ω × N) ↔ (𝑎 ∈ ω ∧ 𝑏N))
5351, 52bitrdi 196 . . . . . . . . . . . . 13 (𝑓 = ⟨𝑎, 𝑏⟩ → (𝑓 ∈ (ω × N) ↔ (𝑎 ∈ ω ∧ 𝑏N)))
5453biimpcd 159 . . . . . . . . . . . 12 (𝑓 ∈ (ω × N) → (𝑓 = ⟨𝑎, 𝑏⟩ → (𝑎 ∈ ω ∧ 𝑏N)))
55 eleq1 2240 . . . . . . . . . . . . . 14 (𝑔 = ⟨𝑐, 𝑑⟩ → (𝑔 ∈ (ω × N) ↔ ⟨𝑐, 𝑑⟩ ∈ (ω × N)))
56 opelxp 4653 . . . . . . . . . . . . . 14 (⟨𝑐, 𝑑⟩ ∈ (ω × N) ↔ (𝑐 ∈ ω ∧ 𝑑N))
5755, 56bitrdi 196 . . . . . . . . . . . . 13 (𝑔 = ⟨𝑐, 𝑑⟩ → (𝑔 ∈ (ω × N) ↔ (𝑐 ∈ ω ∧ 𝑑N)))
5857biimpcd 159 . . . . . . . . . . . 12 (𝑔 ∈ (ω × N) → (𝑔 = ⟨𝑐, 𝑑⟩ → (𝑐 ∈ ω ∧ 𝑑N)))
5954, 58im2anan9 598 . . . . . . . . . . 11 ((𝑓 ∈ (ω × N) ∧ 𝑔 ∈ (ω × N)) → ((𝑓 = ⟨𝑎, 𝑏⟩ ∧ 𝑔 = ⟨𝑐, 𝑑⟩) → ((𝑎 ∈ ω ∧ 𝑏N) ∧ (𝑐 ∈ ω ∧ 𝑑N))))
6059imp 124 . . . . . . . . . 10 (((𝑓 ∈ (ω × N) ∧ 𝑔 ∈ (ω × N)) ∧ (𝑓 = ⟨𝑎, 𝑏⟩ ∧ 𝑔 = ⟨𝑐, 𝑑⟩)) → ((𝑎 ∈ ω ∧ 𝑏N) ∧ (𝑐 ∈ ω ∧ 𝑑N)))
6160adantrr 479 . . . . . . . . 9 (((𝑓 ∈ (ω × N) ∧ 𝑔 ∈ (ω × N)) ∧ ((𝑓 = ⟨𝑎, 𝑏⟩ ∧ 𝑔 = ⟨𝑐, 𝑑⟩) ∧ (𝑎 ·o 𝑑) = (𝑏 ·o 𝑐))) → ((𝑎 ∈ ω ∧ 𝑏N) ∧ (𝑐 ∈ ω ∧ 𝑑N)))
62 pinn 7299 . . . . . . . . . . . 12 (𝑑N𝑑 ∈ ω)
63 nnmcom 6484 . . . . . . . . . . . 12 ((𝑎 ∈ ω ∧ 𝑑 ∈ ω) → (𝑎 ·o 𝑑) = (𝑑 ·o 𝑎))
6462, 63sylan2 286 . . . . . . . . . . 11 ((𝑎 ∈ ω ∧ 𝑑N) → (𝑎 ·o 𝑑) = (𝑑 ·o 𝑎))
65 pinn 7299 . . . . . . . . . . . 12 (𝑏N𝑏 ∈ ω)
66 nnmcom 6484 . . . . . . . . . . . 12 ((𝑏 ∈ ω ∧ 𝑐 ∈ ω) → (𝑏 ·o 𝑐) = (𝑐 ·o 𝑏))
6765, 66sylan 283 . . . . . . . . . . 11 ((𝑏N𝑐 ∈ ω) → (𝑏 ·o 𝑐) = (𝑐 ·o 𝑏))
6864, 67eqeqan12d 2193 . . . . . . . . . 10 (((𝑎 ∈ ω ∧ 𝑑N) ∧ (𝑏N𝑐 ∈ ω)) → ((𝑎 ·o 𝑑) = (𝑏 ·o 𝑐) ↔ (𝑑 ·o 𝑎) = (𝑐 ·o 𝑏)))
6968an42s 589 . . . . . . . . 9 (((𝑎 ∈ ω ∧ 𝑏N) ∧ (𝑐 ∈ ω ∧ 𝑑N)) → ((𝑎 ·o 𝑑) = (𝑏 ·o 𝑐) ↔ (𝑑 ·o 𝑎) = (𝑐 ·o 𝑏)))
7061, 69syl 14 . . . . . . . 8 (((𝑓 ∈ (ω × N) ∧ 𝑔 ∈ (ω × N)) ∧ ((𝑓 = ⟨𝑎, 𝑏⟩ ∧ 𝑔 = ⟨𝑐, 𝑑⟩) ∧ (𝑎 ·o 𝑑) = (𝑏 ·o 𝑐))) → ((𝑎 ·o 𝑑) = (𝑏 ·o 𝑐) ↔ (𝑑 ·o 𝑎) = (𝑐 ·o 𝑏)))
7150, 70mpbid 147 . . . . . . 7 (((𝑓 ∈ (ω × N) ∧ 𝑔 ∈ (ω × N)) ∧ ((𝑓 = ⟨𝑎, 𝑏⟩ ∧ 𝑔 = ⟨𝑐, 𝑑⟩) ∧ (𝑎 ·o 𝑑) = (𝑏 ·o 𝑐))) → (𝑑 ·o 𝑎) = (𝑐 ·o 𝑏))
7271eqcomd 2183 . . . . . 6 (((𝑓 ∈ (ω × N) ∧ 𝑔 ∈ (ω × N)) ∧ ((𝑓 = ⟨𝑎, 𝑏⟩ ∧ 𝑔 = ⟨𝑐, 𝑑⟩) ∧ (𝑎 ·o 𝑑) = (𝑏 ·o 𝑐))) → (𝑐 ·o 𝑏) = (𝑑 ·o 𝑎))
7347, 49, 72jca32 310 . . . . 5 (((𝑓 ∈ (ω × N) ∧ 𝑔 ∈ (ω × N)) ∧ ((𝑓 = ⟨𝑎, 𝑏⟩ ∧ 𝑔 = ⟨𝑐, 𝑑⟩) ∧ (𝑎 ·o 𝑑) = (𝑏 ·o 𝑐))) → ((𝑔 ∈ (ω × N) ∧ 𝑓 ∈ (ω × N)) ∧ ((𝑔 = ⟨𝑐, 𝑑⟩ ∧ 𝑓 = ⟨𝑎, 𝑏⟩) ∧ (𝑐 ·o 𝑏) = (𝑑 ·o 𝑎))))
74732eximi 1601 . . . 4 (∃𝑐𝑑((𝑓 ∈ (ω × N) ∧ 𝑔 ∈ (ω × N)) ∧ ((𝑓 = ⟨𝑎, 𝑏⟩ ∧ 𝑔 = ⟨𝑐, 𝑑⟩) ∧ (𝑎 ·o 𝑑) = (𝑏 ·o 𝑐))) → ∃𝑐𝑑((𝑔 ∈ (ω × N) ∧ 𝑓 ∈ (ω × N)) ∧ ((𝑔 = ⟨𝑐, 𝑑⟩ ∧ 𝑓 = ⟨𝑎, 𝑏⟩) ∧ (𝑐 ·o 𝑏) = (𝑑 ·o 𝑎))))
75742eximi 1601 . . 3 (∃𝑎𝑏𝑐𝑑((𝑓 ∈ (ω × N) ∧ 𝑔 ∈ (ω × N)) ∧ ((𝑓 = ⟨𝑎, 𝑏⟩ ∧ 𝑔 = ⟨𝑐, 𝑑⟩) ∧ (𝑎 ·o 𝑑) = (𝑏 ·o 𝑐))) → ∃𝑎𝑏𝑐𝑑((𝑔 ∈ (ω × N) ∧ 𝑓 ∈ (ω × N)) ∧ ((𝑔 = ⟨𝑐, 𝑑⟩ ∧ 𝑓 = ⟨𝑎, 𝑏⟩) ∧ (𝑐 ·o 𝑏) = (𝑑 ·o 𝑎))))
7645, 75syl 14 . 2 (𝑓 ~Q0 𝑔 → ∃𝑎𝑏𝑐𝑑((𝑔 ∈ (ω × N) ∧ 𝑓 ∈ (ω × N)) ∧ ((𝑔 = ⟨𝑐, 𝑑⟩ ∧ 𝑓 = ⟨𝑎, 𝑏⟩) ∧ (𝑐 ·o 𝑏) = (𝑑 ·o 𝑎))))
77 exrot4 1691 . . 3 (∃𝑎𝑏𝑐𝑑((𝑔 ∈ (ω × N) ∧ 𝑓 ∈ (ω × N)) ∧ ((𝑔 = ⟨𝑐, 𝑑⟩ ∧ 𝑓 = ⟨𝑎, 𝑏⟩) ∧ (𝑐 ·o 𝑏) = (𝑑 ·o 𝑎))) ↔ ∃𝑐𝑑𝑎𝑏((𝑔 ∈ (ω × N) ∧ 𝑓 ∈ (ω × N)) ∧ ((𝑔 = ⟨𝑐, 𝑑⟩ ∧ 𝑓 = ⟨𝑎, 𝑏⟩) ∧ (𝑐 ·o 𝑏) = (𝑑 ·o 𝑎))))
78 19.42vv 1911 . . . . 5 (∃𝑎𝑏((𝑔 ∈ (ω × N) ∧ 𝑓 ∈ (ω × N)) ∧ ((𝑔 = ⟨𝑐, 𝑑⟩ ∧ 𝑓 = ⟨𝑎, 𝑏⟩) ∧ (𝑐 ·o 𝑏) = (𝑑 ·o 𝑎))) ↔ ((𝑔 ∈ (ω × N) ∧ 𝑓 ∈ (ω × N)) ∧ ∃𝑎𝑏((𝑔 = ⟨𝑐, 𝑑⟩ ∧ 𝑓 = ⟨𝑎, 𝑏⟩) ∧ (𝑐 ·o 𝑏) = (𝑑 ·o 𝑎))))
79782exbii 1606 . . . 4 (∃𝑐𝑑𝑎𝑏((𝑔 ∈ (ω × N) ∧ 𝑓 ∈ (ω × N)) ∧ ((𝑔 = ⟨𝑐, 𝑑⟩ ∧ 𝑓 = ⟨𝑎, 𝑏⟩) ∧ (𝑐 ·o 𝑏) = (𝑑 ·o 𝑎))) ↔ ∃𝑐𝑑((𝑔 ∈ (ω × N) ∧ 𝑓 ∈ (ω × N)) ∧ ∃𝑎𝑏((𝑔 = ⟨𝑐, 𝑑⟩ ∧ 𝑓 = ⟨𝑎, 𝑏⟩) ∧ (𝑐 ·o 𝑏) = (𝑑 ·o 𝑎))))
80 19.42vv 1911 . . . . 5 (∃𝑐𝑑((𝑔 ∈ (ω × N) ∧ 𝑓 ∈ (ω × N)) ∧ ∃𝑎𝑏((𝑔 = ⟨𝑐, 𝑑⟩ ∧ 𝑓 = ⟨𝑎, 𝑏⟩) ∧ (𝑐 ·o 𝑏) = (𝑑 ·o 𝑎))) ↔ ((𝑔 ∈ (ω × N) ∧ 𝑓 ∈ (ω × N)) ∧ ∃𝑐𝑑𝑎𝑏((𝑔 = ⟨𝑐, 𝑑⟩ ∧ 𝑓 = ⟨𝑎, 𝑏⟩) ∧ (𝑐 ·o 𝑏) = (𝑑 ·o 𝑎))))
81 opeq12 3778 . . . . . . . . . 10 ((𝑧 = 𝑐𝑤 = 𝑑) → ⟨𝑧, 𝑤⟩ = ⟨𝑐, 𝑑⟩)
8281eqeq2d 2189 . . . . . . . . 9 ((𝑧 = 𝑐𝑤 = 𝑑) → (𝑔 = ⟨𝑧, 𝑤⟩ ↔ 𝑔 = ⟨𝑐, 𝑑⟩))
8382anbi1d 465 . . . . . . . 8 ((𝑧 = 𝑐𝑤 = 𝑑) → ((𝑔 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) ↔ (𝑔 = ⟨𝑐, 𝑑⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩)))
84 simpl 109 . . . . . . . . . 10 ((𝑧 = 𝑐𝑤 = 𝑑) → 𝑧 = 𝑐)
8584oveq1d 5884 . . . . . . . . 9 ((𝑧 = 𝑐𝑤 = 𝑑) → (𝑧 ·o 𝑢) = (𝑐 ·o 𝑢))
86 simpr 110 . . . . . . . . . 10 ((𝑧 = 𝑐𝑤 = 𝑑) → 𝑤 = 𝑑)
8786oveq1d 5884 . . . . . . . . 9 ((𝑧 = 𝑐𝑤 = 𝑑) → (𝑤 ·o 𝑣) = (𝑑 ·o 𝑣))
8885, 87eqeq12d 2192 . . . . . . . 8 ((𝑧 = 𝑐𝑤 = 𝑑) → ((𝑧 ·o 𝑢) = (𝑤 ·o 𝑣) ↔ (𝑐 ·o 𝑢) = (𝑑 ·o 𝑣)))
8983, 88anbi12d 473 . . . . . . 7 ((𝑧 = 𝑐𝑤 = 𝑑) → (((𝑔 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)) ↔ ((𝑔 = ⟨𝑐, 𝑑⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) ∧ (𝑐 ·o 𝑢) = (𝑑 ·o 𝑣))))
90 opeq12 3778 . . . . . . . . . 10 ((𝑣 = 𝑎𝑢 = 𝑏) → ⟨𝑣, 𝑢⟩ = ⟨𝑎, 𝑏⟩)
9190eqeq2d 2189 . . . . . . . . 9 ((𝑣 = 𝑎𝑢 = 𝑏) → (𝑓 = ⟨𝑣, 𝑢⟩ ↔ 𝑓 = ⟨𝑎, 𝑏⟩))
9291anbi2d 464 . . . . . . . 8 ((𝑣 = 𝑎𝑢 = 𝑏) → ((𝑔 = ⟨𝑐, 𝑑⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) ↔ (𝑔 = ⟨𝑐, 𝑑⟩ ∧ 𝑓 = ⟨𝑎, 𝑏⟩)))
93 simpr 110 . . . . . . . . . 10 ((𝑣 = 𝑎𝑢 = 𝑏) → 𝑢 = 𝑏)
9493oveq2d 5885 . . . . . . . . 9 ((𝑣 = 𝑎𝑢 = 𝑏) → (𝑐 ·o 𝑢) = (𝑐 ·o 𝑏))
95 simpl 109 . . . . . . . . . 10 ((𝑣 = 𝑎𝑢 = 𝑏) → 𝑣 = 𝑎)
9695oveq2d 5885 . . . . . . . . 9 ((𝑣 = 𝑎𝑢 = 𝑏) → (𝑑 ·o 𝑣) = (𝑑 ·o 𝑎))
9794, 96eqeq12d 2192 . . . . . . . 8 ((𝑣 = 𝑎𝑢 = 𝑏) → ((𝑐 ·o 𝑢) = (𝑑 ·o 𝑣) ↔ (𝑐 ·o 𝑏) = (𝑑 ·o 𝑎)))
9892, 97anbi12d 473 . . . . . . 7 ((𝑣 = 𝑎𝑢 = 𝑏) → (((𝑔 = ⟨𝑐, 𝑑⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) ∧ (𝑐 ·o 𝑢) = (𝑑 ·o 𝑣)) ↔ ((𝑔 = ⟨𝑐, 𝑑⟩ ∧ 𝑓 = ⟨𝑎, 𝑏⟩) ∧ (𝑐 ·o 𝑏) = (𝑑 ·o 𝑎))))
9989, 98cbvex4v 1930 . . . . . 6 (∃𝑧𝑤𝑣𝑢((𝑔 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)) ↔ ∃𝑐𝑑𝑎𝑏((𝑔 = ⟨𝑐, 𝑑⟩ ∧ 𝑓 = ⟨𝑎, 𝑏⟩) ∧ (𝑐 ·o 𝑏) = (𝑑 ·o 𝑎)))
100 eleq1 2240 . . . . . . . . . 10 (𝑥 = 𝑔 → (𝑥 ∈ (ω × N) ↔ 𝑔 ∈ (ω × N)))
101100anbi1d 465 . . . . . . . . 9 (𝑥 = 𝑔 → ((𝑥 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ↔ (𝑔 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N))))
102 eqeq1 2184 . . . . . . . . . . . 12 (𝑥 = 𝑔 → (𝑥 = ⟨𝑧, 𝑤⟩ ↔ 𝑔 = ⟨𝑧, 𝑤⟩))
103102anbi1d 465 . . . . . . . . . . 11 (𝑥 = 𝑔 → ((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ↔ (𝑔 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩)))
104103anbi1d 465 . . . . . . . . . 10 (𝑥 = 𝑔 → (((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)) ↔ ((𝑔 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))))
1051044exbidv 1870 . . . . . . . . 9 (𝑥 = 𝑔 → (∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)) ↔ ∃𝑧𝑤𝑣𝑢((𝑔 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))))
106101, 105anbi12d 473 . . . . . . . 8 (𝑥 = 𝑔 → (((𝑥 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))) ↔ ((𝑔 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑔 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)))))
107 eleq1 2240 . . . . . . . . . 10 (𝑦 = 𝑓 → (𝑦 ∈ (ω × N) ↔ 𝑓 ∈ (ω × N)))
108107anbi2d 464 . . . . . . . . 9 (𝑦 = 𝑓 → ((𝑔 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ↔ (𝑔 ∈ (ω × N) ∧ 𝑓 ∈ (ω × N))))
109 eqeq1 2184 . . . . . . . . . . . 12 (𝑦 = 𝑓 → (𝑦 = ⟨𝑣, 𝑢⟩ ↔ 𝑓 = ⟨𝑣, 𝑢⟩))
110109anbi2d 464 . . . . . . . . . . 11 (𝑦 = 𝑓 → ((𝑔 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ↔ (𝑔 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩)))
111110anbi1d 465 . . . . . . . . . 10 (𝑦 = 𝑓 → (((𝑔 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)) ↔ ((𝑔 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))))
1121114exbidv 1870 . . . . . . . . 9 (𝑦 = 𝑓 → (∃𝑧𝑤𝑣𝑢((𝑔 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)) ↔ ∃𝑧𝑤𝑣𝑢((𝑔 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))))
113108, 112anbi12d 473 . . . . . . . 8 (𝑦 = 𝑓 → (((𝑔 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑔 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))) ↔ ((𝑔 ∈ (ω × N) ∧ 𝑓 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑔 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)))))
1142, 1, 106, 113, 17brab 4269 . . . . . . 7 (𝑔 ~Q0 𝑓 ↔ ((𝑔 ∈ (ω × N) ∧ 𝑓 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑔 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))))
115114biimpri 133 . . . . . 6 (((𝑔 ∈ (ω × N) ∧ 𝑓 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑔 = ⟨𝑧, 𝑤⟩ ∧ 𝑓 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))) → 𝑔 ~Q0 𝑓)
11699, 115sylan2br 288 . . . . 5 (((𝑔 ∈ (ω × N) ∧ 𝑓 ∈ (ω × N)) ∧ ∃𝑐𝑑𝑎𝑏((𝑔 = ⟨𝑐, 𝑑⟩ ∧ 𝑓 = ⟨𝑎, 𝑏⟩) ∧ (𝑐 ·o 𝑏) = (𝑑 ·o 𝑎))) → 𝑔 ~Q0 𝑓)
11780, 116sylbi 121 . . . 4 (∃𝑐𝑑((𝑔 ∈ (ω × N) ∧ 𝑓 ∈ (ω × N)) ∧ ∃𝑎𝑏((𝑔 = ⟨𝑐, 𝑑⟩ ∧ 𝑓 = ⟨𝑎, 𝑏⟩) ∧ (𝑐 ·o 𝑏) = (𝑑 ·o 𝑎))) → 𝑔 ~Q0 𝑓)
11879, 117sylbi 121 . . 3 (∃𝑐𝑑𝑎𝑏((𝑔 ∈ (ω × N) ∧ 𝑓 ∈ (ω × N)) ∧ ((𝑔 = ⟨𝑐, 𝑑⟩ ∧ 𝑓 = ⟨𝑎, 𝑏⟩) ∧ (𝑐 ·o 𝑏) = (𝑑 ·o 𝑎))) → 𝑔 ~Q0 𝑓)
11977, 118sylbi 121 . 2 (∃𝑎𝑏𝑐𝑑((𝑔 ∈ (ω × N) ∧ 𝑓 ∈ (ω × N)) ∧ ((𝑔 = ⟨𝑐, 𝑑⟩ ∧ 𝑓 = ⟨𝑎, 𝑏⟩) ∧ (𝑐 ·o 𝑏) = (𝑑 ·o 𝑎))) → 𝑔 ~Q0 𝑓)
12076, 119syl 14 1 (𝑓 ~Q0 𝑔𝑔 ~Q0 𝑓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wex 1492  wcel 2148  cop 3594   class class class wbr 4000  ωcom 4586   × cxp 4621  (class class class)co 5869   ·o comu 6409  Ncnpi 7262   ~Q0 ceq0 7276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-iord 4363  df-on 4365  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-oadd 6415  df-omul 6416  df-ni 7294  df-enq0 7414
This theorem is referenced by:  enq0er  7425
  Copyright terms: Public domain W3C validator