| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-enq0 | Unicode version | ||
| Description: Define equivalence relation for nonnegative fractions. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by Jim Kingdon, 2-Nov-2019.) |
| Ref | Expression |
|---|---|
| df-enq0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ceq0 7353 |
. 2
| |
| 2 | vx |
. . . . . . 7
| |
| 3 | 2 | cv 1363 |
. . . . . 6
|
| 4 | com 4626 |
. . . . . . 7
| |
| 5 | cnpi 7339 |
. . . . . . 7
| |
| 6 | 4, 5 | cxp 4661 |
. . . . . 6
|
| 7 | 3, 6 | wcel 2167 |
. . . . 5
|
| 8 | vy |
. . . . . . 7
| |
| 9 | 8 | cv 1363 |
. . . . . 6
|
| 10 | 9, 6 | wcel 2167 |
. . . . 5
|
| 11 | 7, 10 | wa 104 |
. . . 4
|
| 12 | vz |
. . . . . . . . . . . . 13
| |
| 13 | 12 | cv 1363 |
. . . . . . . . . . . 12
|
| 14 | vw |
. . . . . . . . . . . . 13
| |
| 15 | 14 | cv 1363 |
. . . . . . . . . . . 12
|
| 16 | 13, 15 | cop 3625 |
. . . . . . . . . . 11
|
| 17 | 3, 16 | wceq 1364 |
. . . . . . . . . 10
|
| 18 | vv |
. . . . . . . . . . . . 13
| |
| 19 | 18 | cv 1363 |
. . . . . . . . . . . 12
|
| 20 | vu |
. . . . . . . . . . . . 13
| |
| 21 | 20 | cv 1363 |
. . . . . . . . . . . 12
|
| 22 | 19, 21 | cop 3625 |
. . . . . . . . . . 11
|
| 23 | 9, 22 | wceq 1364 |
. . . . . . . . . 10
|
| 24 | 17, 23 | wa 104 |
. . . . . . . . 9
|
| 25 | comu 6472 |
. . . . . . . . . . 11
| |
| 26 | 13, 21, 25 | co 5922 |
. . . . . . . . . 10
|
| 27 | 15, 19, 25 | co 5922 |
. . . . . . . . . 10
|
| 28 | 26, 27 | wceq 1364 |
. . . . . . . . 9
|
| 29 | 24, 28 | wa 104 |
. . . . . . . 8
|
| 30 | 29, 20 | wex 1506 |
. . . . . . 7
|
| 31 | 30, 18 | wex 1506 |
. . . . . 6
|
| 32 | 31, 14 | wex 1506 |
. . . . 5
|
| 33 | 32, 12 | wex 1506 |
. . . 4
|
| 34 | 11, 33 | wa 104 |
. . 3
|
| 35 | 34, 2, 8 | copab 4093 |
. 2
|
| 36 | 1, 35 | wceq 1364 |
1
|
| Colors of variables: wff set class |
| This definition is referenced by: enq0enq 7498 enq0sym 7499 enq0ref 7500 enq0tr 7501 enq0er 7502 enq0breq 7503 enq0ex 7506 |
| Copyright terms: Public domain | W3C validator |