Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-enq0 | Unicode version |
Description: Define equivalence relation for nonnegative fractions. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by Jim Kingdon, 2-Nov-2019.) |
Ref | Expression |
---|---|
df-enq0 | ~Q0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ceq0 7248 | . 2 ~Q0 | |
2 | vx | . . . . . . 7 | |
3 | 2 | cv 1347 | . . . . . 6 |
4 | com 4574 | . . . . . . 7 | |
5 | cnpi 7234 | . . . . . . 7 | |
6 | 4, 5 | cxp 4609 | . . . . . 6 |
7 | 3, 6 | wcel 2141 | . . . . 5 |
8 | vy | . . . . . . 7 | |
9 | 8 | cv 1347 | . . . . . 6 |
10 | 9, 6 | wcel 2141 | . . . . 5 |
11 | 7, 10 | wa 103 | . . . 4 |
12 | vz | . . . . . . . . . . . . 13 | |
13 | 12 | cv 1347 | . . . . . . . . . . . 12 |
14 | vw | . . . . . . . . . . . . 13 | |
15 | 14 | cv 1347 | . . . . . . . . . . . 12 |
16 | 13, 15 | cop 3586 | . . . . . . . . . . 11 |
17 | 3, 16 | wceq 1348 | . . . . . . . . . 10 |
18 | vv | . . . . . . . . . . . . 13 | |
19 | 18 | cv 1347 | . . . . . . . . . . . 12 |
20 | vu | . . . . . . . . . . . . 13 | |
21 | 20 | cv 1347 | . . . . . . . . . . . 12 |
22 | 19, 21 | cop 3586 | . . . . . . . . . . 11 |
23 | 9, 22 | wceq 1348 | . . . . . . . . . 10 |
24 | 17, 23 | wa 103 | . . . . . . . . 9 |
25 | comu 6393 | . . . . . . . . . . 11 | |
26 | 13, 21, 25 | co 5853 | . . . . . . . . . 10 |
27 | 15, 19, 25 | co 5853 | . . . . . . . . . 10 |
28 | 26, 27 | wceq 1348 | . . . . . . . . 9 |
29 | 24, 28 | wa 103 | . . . . . . . 8 |
30 | 29, 20 | wex 1485 | . . . . . . 7 |
31 | 30, 18 | wex 1485 | . . . . . 6 |
32 | 31, 14 | wex 1485 | . . . . 5 |
33 | 32, 12 | wex 1485 | . . . 4 |
34 | 11, 33 | wa 103 | . . 3 |
35 | 34, 2, 8 | copab 4049 | . 2 |
36 | 1, 35 | wceq 1348 | 1 ~Q0 |
Colors of variables: wff set class |
This definition is referenced by: enq0enq 7393 enq0sym 7394 enq0ref 7395 enq0tr 7396 enq0er 7397 enq0breq 7398 enq0ex 7401 |
Copyright terms: Public domain | W3C validator |