ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enq0breq GIF version

Theorem enq0breq 7496
Description: Equivalence relation for nonnegative fractions in terms of natural numbers. (Contributed by NM, 27-Aug-1995.)
Assertion
Ref Expression
enq0breq (((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) → (⟨𝐴, 𝐵⟩ ~Q0𝐶, 𝐷⟩ ↔ (𝐴 ·o 𝐷) = (𝐵 ·o 𝐶)))

Proof of Theorem enq0breq
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq12 5927 . . . . . 6 ((𝑧 = 𝐴𝑢 = 𝐷) → (𝑧 ·o 𝑢) = (𝐴 ·o 𝐷))
2 oveq12 5927 . . . . . 6 ((𝑤 = 𝐵𝑣 = 𝐶) → (𝑤 ·o 𝑣) = (𝐵 ·o 𝐶))
31, 2eqeqan12d 2209 . . . . 5 (((𝑧 = 𝐴𝑢 = 𝐷) ∧ (𝑤 = 𝐵𝑣 = 𝐶)) → ((𝑧 ·o 𝑢) = (𝑤 ·o 𝑣) ↔ (𝐴 ·o 𝐷) = (𝐵 ·o 𝐶)))
43an42s 589 . . . 4 (((𝑧 = 𝐴𝑤 = 𝐵) ∧ (𝑣 = 𝐶𝑢 = 𝐷)) → ((𝑧 ·o 𝑢) = (𝑤 ·o 𝑣) ↔ (𝐴 ·o 𝐷) = (𝐵 ·o 𝐶)))
54copsex4g 4276 . . 3 (((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) → (∃𝑧𝑤𝑣𝑢((⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ ⟨𝐶, 𝐷⟩ = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)) ↔ (𝐴 ·o 𝐷) = (𝐵 ·o 𝐶)))
65anbi2d 464 . 2 (((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) → (((⟨𝐴, 𝐵⟩ ∈ (ω × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ ⟨𝐶, 𝐷⟩ = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))) ↔ ((⟨𝐴, 𝐵⟩ ∈ (ω × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (ω × N)) ∧ (𝐴 ·o 𝐷) = (𝐵 ·o 𝐶))))
7 opexg 4257 . . 3 ((𝐴 ∈ ω ∧ 𝐵N) → ⟨𝐴, 𝐵⟩ ∈ V)
8 opexg 4257 . . 3 ((𝐶 ∈ ω ∧ 𝐷N) → ⟨𝐶, 𝐷⟩ ∈ V)
9 eleq1 2256 . . . . . 6 (𝑥 = ⟨𝐴, 𝐵⟩ → (𝑥 ∈ (ω × N) ↔ ⟨𝐴, 𝐵⟩ ∈ (ω × N)))
109anbi1d 465 . . . . 5 (𝑥 = ⟨𝐴, 𝐵⟩ → ((𝑥 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ↔ (⟨𝐴, 𝐵⟩ ∈ (ω × N) ∧ 𝑦 ∈ (ω × N))))
11 eqeq1 2200 . . . . . . . 8 (𝑥 = ⟨𝐴, 𝐵⟩ → (𝑥 = ⟨𝑧, 𝑤⟩ ↔ ⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩))
1211anbi1d 465 . . . . . . 7 (𝑥 = ⟨𝐴, 𝐵⟩ → ((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ↔ (⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩)))
1312anbi1d 465 . . . . . 6 (𝑥 = ⟨𝐴, 𝐵⟩ → (((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)) ↔ ((⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))))
14134exbidv 1881 . . . . 5 (𝑥 = ⟨𝐴, 𝐵⟩ → (∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)) ↔ ∃𝑧𝑤𝑣𝑢((⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))))
1510, 14anbi12d 473 . . . 4 (𝑥 = ⟨𝐴, 𝐵⟩ → (((𝑥 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))) ↔ ((⟨𝐴, 𝐵⟩ ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)))))
16 eleq1 2256 . . . . . 6 (𝑦 = ⟨𝐶, 𝐷⟩ → (𝑦 ∈ (ω × N) ↔ ⟨𝐶, 𝐷⟩ ∈ (ω × N)))
1716anbi2d 464 . . . . 5 (𝑦 = ⟨𝐶, 𝐷⟩ → ((⟨𝐴, 𝐵⟩ ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ↔ (⟨𝐴, 𝐵⟩ ∈ (ω × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (ω × N))))
18 eqeq1 2200 . . . . . . . 8 (𝑦 = ⟨𝐶, 𝐷⟩ → (𝑦 = ⟨𝑣, 𝑢⟩ ↔ ⟨𝐶, 𝐷⟩ = ⟨𝑣, 𝑢⟩))
1918anbi2d 464 . . . . . . 7 (𝑦 = ⟨𝐶, 𝐷⟩ → ((⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ↔ (⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ ⟨𝐶, 𝐷⟩ = ⟨𝑣, 𝑢⟩)))
2019anbi1d 465 . . . . . 6 (𝑦 = ⟨𝐶, 𝐷⟩ → (((⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)) ↔ ((⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ ⟨𝐶, 𝐷⟩ = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))))
21204exbidv 1881 . . . . 5 (𝑦 = ⟨𝐶, 𝐷⟩ → (∃𝑧𝑤𝑣𝑢((⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)) ↔ ∃𝑧𝑤𝑣𝑢((⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ ⟨𝐶, 𝐷⟩ = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))))
2217, 21anbi12d 473 . . . 4 (𝑦 = ⟨𝐶, 𝐷⟩ → (((⟨𝐴, 𝐵⟩ ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))) ↔ ((⟨𝐴, 𝐵⟩ ∈ (ω × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ ⟨𝐶, 𝐷⟩ = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)))))
23 df-enq0 7484 . . . 4 ~Q0 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)))}
2415, 22, 23brabg 4299 . . 3 ((⟨𝐴, 𝐵⟩ ∈ V ∧ ⟨𝐶, 𝐷⟩ ∈ V) → (⟨𝐴, 𝐵⟩ ~Q0𝐶, 𝐷⟩ ↔ ((⟨𝐴, 𝐵⟩ ∈ (ω × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ ⟨𝐶, 𝐷⟩ = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)))))
257, 8, 24syl2an 289 . 2 (((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) → (⟨𝐴, 𝐵⟩ ~Q0𝐶, 𝐷⟩ ↔ ((⟨𝐴, 𝐵⟩ ∈ (ω × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ ⟨𝐶, 𝐷⟩ = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)))))
26 opelxpi 4691 . . . 4 ((𝐴 ∈ ω ∧ 𝐵N) → ⟨𝐴, 𝐵⟩ ∈ (ω × N))
27 opelxpi 4691 . . . 4 ((𝐶 ∈ ω ∧ 𝐷N) → ⟨𝐶, 𝐷⟩ ∈ (ω × N))
2826, 27anim12i 338 . . 3 (((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) → (⟨𝐴, 𝐵⟩ ∈ (ω × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (ω × N)))
2928biantrurd 305 . 2 (((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) → ((𝐴 ·o 𝐷) = (𝐵 ·o 𝐶) ↔ ((⟨𝐴, 𝐵⟩ ∈ (ω × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (ω × N)) ∧ (𝐴 ·o 𝐷) = (𝐵 ·o 𝐶))))
306, 25, 293bitr4d 220 1 (((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) → (⟨𝐴, 𝐵⟩ ~Q0𝐶, 𝐷⟩ ↔ (𝐴 ·o 𝐷) = (𝐵 ·o 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wex 1503  wcel 2164  Vcvv 2760  cop 3621   class class class wbr 4029  ωcom 4622   × cxp 4657  (class class class)co 5918   ·o comu 6467  Ncnpi 7332   ~Q0 ceq0 7346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-xp 4665  df-iota 5215  df-fv 5262  df-ov 5921  df-enq0 7484
This theorem is referenced by:  enq0eceq  7497  nqnq0pi  7498  addcmpblnq0  7503  mulcmpblnq0  7504  mulcanenq0ec  7505  nnnq0lem1  7506
  Copyright terms: Public domain W3C validator