ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enq0breq GIF version

Theorem enq0breq 6974
Description: Equivalence relation for nonnegative fractions in terms of natural numbers. (Contributed by NM, 27-Aug-1995.)
Assertion
Ref Expression
enq0breq (((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) → (⟨𝐴, 𝐵⟩ ~Q0𝐶, 𝐷⟩ ↔ (𝐴 ·𝑜 𝐷) = (𝐵 ·𝑜 𝐶)))

Proof of Theorem enq0breq
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq12 5643 . . . . . 6 ((𝑧 = 𝐴𝑢 = 𝐷) → (𝑧 ·𝑜 𝑢) = (𝐴 ·𝑜 𝐷))
2 oveq12 5643 . . . . . 6 ((𝑤 = 𝐵𝑣 = 𝐶) → (𝑤 ·𝑜 𝑣) = (𝐵 ·𝑜 𝐶))
31, 2eqeqan12d 2103 . . . . 5 (((𝑧 = 𝐴𝑢 = 𝐷) ∧ (𝑤 = 𝐵𝑣 = 𝐶)) → ((𝑧 ·𝑜 𝑢) = (𝑤 ·𝑜 𝑣) ↔ (𝐴 ·𝑜 𝐷) = (𝐵 ·𝑜 𝐶)))
43an42s 556 . . . 4 (((𝑧 = 𝐴𝑤 = 𝐵) ∧ (𝑣 = 𝐶𝑢 = 𝐷)) → ((𝑧 ·𝑜 𝑢) = (𝑤 ·𝑜 𝑣) ↔ (𝐴 ·𝑜 𝐷) = (𝐵 ·𝑜 𝐶)))
54copsex4g 4065 . . 3 (((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) → (∃𝑧𝑤𝑣𝑢((⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ ⟨𝐶, 𝐷⟩ = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·𝑜 𝑢) = (𝑤 ·𝑜 𝑣)) ↔ (𝐴 ·𝑜 𝐷) = (𝐵 ·𝑜 𝐶)))
65anbi2d 452 . 2 (((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) → (((⟨𝐴, 𝐵⟩ ∈ (ω × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ ⟨𝐶, 𝐷⟩ = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·𝑜 𝑢) = (𝑤 ·𝑜 𝑣))) ↔ ((⟨𝐴, 𝐵⟩ ∈ (ω × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (ω × N)) ∧ (𝐴 ·𝑜 𝐷) = (𝐵 ·𝑜 𝐶))))
7 opexg 4046 . . 3 ((𝐴 ∈ ω ∧ 𝐵N) → ⟨𝐴, 𝐵⟩ ∈ V)
8 opexg 4046 . . 3 ((𝐶 ∈ ω ∧ 𝐷N) → ⟨𝐶, 𝐷⟩ ∈ V)
9 eleq1 2150 . . . . . 6 (𝑥 = ⟨𝐴, 𝐵⟩ → (𝑥 ∈ (ω × N) ↔ ⟨𝐴, 𝐵⟩ ∈ (ω × N)))
109anbi1d 453 . . . . 5 (𝑥 = ⟨𝐴, 𝐵⟩ → ((𝑥 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ↔ (⟨𝐴, 𝐵⟩ ∈ (ω × N) ∧ 𝑦 ∈ (ω × N))))
11 eqeq1 2094 . . . . . . . 8 (𝑥 = ⟨𝐴, 𝐵⟩ → (𝑥 = ⟨𝑧, 𝑤⟩ ↔ ⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩))
1211anbi1d 453 . . . . . . 7 (𝑥 = ⟨𝐴, 𝐵⟩ → ((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ↔ (⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩)))
1312anbi1d 453 . . . . . 6 (𝑥 = ⟨𝐴, 𝐵⟩ → (((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·𝑜 𝑢) = (𝑤 ·𝑜 𝑣)) ↔ ((⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·𝑜 𝑢) = (𝑤 ·𝑜 𝑣))))
14134exbidv 1798 . . . . 5 (𝑥 = ⟨𝐴, 𝐵⟩ → (∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·𝑜 𝑢) = (𝑤 ·𝑜 𝑣)) ↔ ∃𝑧𝑤𝑣𝑢((⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·𝑜 𝑢) = (𝑤 ·𝑜 𝑣))))
1510, 14anbi12d 457 . . . 4 (𝑥 = ⟨𝐴, 𝐵⟩ → (((𝑥 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·𝑜 𝑢) = (𝑤 ·𝑜 𝑣))) ↔ ((⟨𝐴, 𝐵⟩ ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·𝑜 𝑢) = (𝑤 ·𝑜 𝑣)))))
16 eleq1 2150 . . . . . 6 (𝑦 = ⟨𝐶, 𝐷⟩ → (𝑦 ∈ (ω × N) ↔ ⟨𝐶, 𝐷⟩ ∈ (ω × N)))
1716anbi2d 452 . . . . 5 (𝑦 = ⟨𝐶, 𝐷⟩ → ((⟨𝐴, 𝐵⟩ ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ↔ (⟨𝐴, 𝐵⟩ ∈ (ω × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (ω × N))))
18 eqeq1 2094 . . . . . . . 8 (𝑦 = ⟨𝐶, 𝐷⟩ → (𝑦 = ⟨𝑣, 𝑢⟩ ↔ ⟨𝐶, 𝐷⟩ = ⟨𝑣, 𝑢⟩))
1918anbi2d 452 . . . . . . 7 (𝑦 = ⟨𝐶, 𝐷⟩ → ((⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ↔ (⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ ⟨𝐶, 𝐷⟩ = ⟨𝑣, 𝑢⟩)))
2019anbi1d 453 . . . . . 6 (𝑦 = ⟨𝐶, 𝐷⟩ → (((⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·𝑜 𝑢) = (𝑤 ·𝑜 𝑣)) ↔ ((⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ ⟨𝐶, 𝐷⟩ = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·𝑜 𝑢) = (𝑤 ·𝑜 𝑣))))
21204exbidv 1798 . . . . 5 (𝑦 = ⟨𝐶, 𝐷⟩ → (∃𝑧𝑤𝑣𝑢((⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·𝑜 𝑢) = (𝑤 ·𝑜 𝑣)) ↔ ∃𝑧𝑤𝑣𝑢((⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ ⟨𝐶, 𝐷⟩ = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·𝑜 𝑢) = (𝑤 ·𝑜 𝑣))))
2217, 21anbi12d 457 . . . 4 (𝑦 = ⟨𝐶, 𝐷⟩ → (((⟨𝐴, 𝐵⟩ ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·𝑜 𝑢) = (𝑤 ·𝑜 𝑣))) ↔ ((⟨𝐴, 𝐵⟩ ∈ (ω × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ ⟨𝐶, 𝐷⟩ = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·𝑜 𝑢) = (𝑤 ·𝑜 𝑣)))))
23 df-enq0 6962 . . . 4 ~Q0 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·𝑜 𝑢) = (𝑤 ·𝑜 𝑣)))}
2415, 22, 23brabg 4087 . . 3 ((⟨𝐴, 𝐵⟩ ∈ V ∧ ⟨𝐶, 𝐷⟩ ∈ V) → (⟨𝐴, 𝐵⟩ ~Q0𝐶, 𝐷⟩ ↔ ((⟨𝐴, 𝐵⟩ ∈ (ω × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ ⟨𝐶, 𝐷⟩ = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·𝑜 𝑢) = (𝑤 ·𝑜 𝑣)))))
257, 8, 24syl2an 283 . 2 (((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) → (⟨𝐴, 𝐵⟩ ~Q0𝐶, 𝐷⟩ ↔ ((⟨𝐴, 𝐵⟩ ∈ (ω × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ ⟨𝐶, 𝐷⟩ = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·𝑜 𝑢) = (𝑤 ·𝑜 𝑣)))))
26 opelxpi 4459 . . . 4 ((𝐴 ∈ ω ∧ 𝐵N) → ⟨𝐴, 𝐵⟩ ∈ (ω × N))
27 opelxpi 4459 . . . 4 ((𝐶 ∈ ω ∧ 𝐷N) → ⟨𝐶, 𝐷⟩ ∈ (ω × N))
2826, 27anim12i 331 . . 3 (((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) → (⟨𝐴, 𝐵⟩ ∈ (ω × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (ω × N)))
2928biantrurd 299 . 2 (((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) → ((𝐴 ·𝑜 𝐷) = (𝐵 ·𝑜 𝐶) ↔ ((⟨𝐴, 𝐵⟩ ∈ (ω × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (ω × N)) ∧ (𝐴 ·𝑜 𝐷) = (𝐵 ·𝑜 𝐶))))
306, 25, 293bitr4d 218 1 (((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) → (⟨𝐴, 𝐵⟩ ~Q0𝐶, 𝐷⟩ ↔ (𝐴 ·𝑜 𝐷) = (𝐵 ·𝑜 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1289  wex 1426  wcel 1438  Vcvv 2619  cop 3444   class class class wbr 3837  ωcom 4395   × cxp 4426  (class class class)co 5634   ·𝑜 comu 6161  Ncnpi 6810   ~Q0 ceq0 6824
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-v 2621  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-br 3838  df-opab 3892  df-xp 4434  df-iota 4967  df-fv 5010  df-ov 5637  df-enq0 6962
This theorem is referenced by:  enq0eceq  6975  nqnq0pi  6976  addcmpblnq0  6981  mulcmpblnq0  6982  mulcanenq0ec  6983  nnnq0lem1  6984
  Copyright terms: Public domain W3C validator