Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  enq0breq GIF version

Theorem enq0breq 7269
 Description: Equivalence relation for nonnegative fractions in terms of natural numbers. (Contributed by NM, 27-Aug-1995.)
Assertion
Ref Expression
enq0breq (((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) → (⟨𝐴, 𝐵⟩ ~Q0𝐶, 𝐷⟩ ↔ (𝐴 ·o 𝐷) = (𝐵 ·o 𝐶)))

Proof of Theorem enq0breq
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq12 5791 . . . . . 6 ((𝑧 = 𝐴𝑢 = 𝐷) → (𝑧 ·o 𝑢) = (𝐴 ·o 𝐷))
2 oveq12 5791 . . . . . 6 ((𝑤 = 𝐵𝑣 = 𝐶) → (𝑤 ·o 𝑣) = (𝐵 ·o 𝐶))
31, 2eqeqan12d 2156 . . . . 5 (((𝑧 = 𝐴𝑢 = 𝐷) ∧ (𝑤 = 𝐵𝑣 = 𝐶)) → ((𝑧 ·o 𝑢) = (𝑤 ·o 𝑣) ↔ (𝐴 ·o 𝐷) = (𝐵 ·o 𝐶)))
43an42s 579 . . . 4 (((𝑧 = 𝐴𝑤 = 𝐵) ∧ (𝑣 = 𝐶𝑢 = 𝐷)) → ((𝑧 ·o 𝑢) = (𝑤 ·o 𝑣) ↔ (𝐴 ·o 𝐷) = (𝐵 ·o 𝐶)))
54copsex4g 4177 . . 3 (((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) → (∃𝑧𝑤𝑣𝑢((⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ ⟨𝐶, 𝐷⟩ = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)) ↔ (𝐴 ·o 𝐷) = (𝐵 ·o 𝐶)))
65anbi2d 460 . 2 (((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) → (((⟨𝐴, 𝐵⟩ ∈ (ω × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ ⟨𝐶, 𝐷⟩ = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))) ↔ ((⟨𝐴, 𝐵⟩ ∈ (ω × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (ω × N)) ∧ (𝐴 ·o 𝐷) = (𝐵 ·o 𝐶))))
7 opexg 4158 . . 3 ((𝐴 ∈ ω ∧ 𝐵N) → ⟨𝐴, 𝐵⟩ ∈ V)
8 opexg 4158 . . 3 ((𝐶 ∈ ω ∧ 𝐷N) → ⟨𝐶, 𝐷⟩ ∈ V)
9 eleq1 2203 . . . . . 6 (𝑥 = ⟨𝐴, 𝐵⟩ → (𝑥 ∈ (ω × N) ↔ ⟨𝐴, 𝐵⟩ ∈ (ω × N)))
109anbi1d 461 . . . . 5 (𝑥 = ⟨𝐴, 𝐵⟩ → ((𝑥 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ↔ (⟨𝐴, 𝐵⟩ ∈ (ω × N) ∧ 𝑦 ∈ (ω × N))))
11 eqeq1 2147 . . . . . . . 8 (𝑥 = ⟨𝐴, 𝐵⟩ → (𝑥 = ⟨𝑧, 𝑤⟩ ↔ ⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩))
1211anbi1d 461 . . . . . . 7 (𝑥 = ⟨𝐴, 𝐵⟩ → ((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ↔ (⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩)))
1312anbi1d 461 . . . . . 6 (𝑥 = ⟨𝐴, 𝐵⟩ → (((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)) ↔ ((⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))))
14134exbidv 1843 . . . . 5 (𝑥 = ⟨𝐴, 𝐵⟩ → (∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)) ↔ ∃𝑧𝑤𝑣𝑢((⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))))
1510, 14anbi12d 465 . . . 4 (𝑥 = ⟨𝐴, 𝐵⟩ → (((𝑥 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))) ↔ ((⟨𝐴, 𝐵⟩ ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)))))
16 eleq1 2203 . . . . . 6 (𝑦 = ⟨𝐶, 𝐷⟩ → (𝑦 ∈ (ω × N) ↔ ⟨𝐶, 𝐷⟩ ∈ (ω × N)))
1716anbi2d 460 . . . . 5 (𝑦 = ⟨𝐶, 𝐷⟩ → ((⟨𝐴, 𝐵⟩ ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ↔ (⟨𝐴, 𝐵⟩ ∈ (ω × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (ω × N))))
18 eqeq1 2147 . . . . . . . 8 (𝑦 = ⟨𝐶, 𝐷⟩ → (𝑦 = ⟨𝑣, 𝑢⟩ ↔ ⟨𝐶, 𝐷⟩ = ⟨𝑣, 𝑢⟩))
1918anbi2d 460 . . . . . . 7 (𝑦 = ⟨𝐶, 𝐷⟩ → ((⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ↔ (⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ ⟨𝐶, 𝐷⟩ = ⟨𝑣, 𝑢⟩)))
2019anbi1d 461 . . . . . 6 (𝑦 = ⟨𝐶, 𝐷⟩ → (((⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)) ↔ ((⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ ⟨𝐶, 𝐷⟩ = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))))
21204exbidv 1843 . . . . 5 (𝑦 = ⟨𝐶, 𝐷⟩ → (∃𝑧𝑤𝑣𝑢((⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)) ↔ ∃𝑧𝑤𝑣𝑢((⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ ⟨𝐶, 𝐷⟩ = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))))
2217, 21anbi12d 465 . . . 4 (𝑦 = ⟨𝐶, 𝐷⟩ → (((⟨𝐴, 𝐵⟩ ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣))) ↔ ((⟨𝐴, 𝐵⟩ ∈ (ω × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ ⟨𝐶, 𝐷⟩ = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)))))
23 df-enq0 7257 . . . 4 ~Q0 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ω × N) ∧ 𝑦 ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)))}
2415, 22, 23brabg 4199 . . 3 ((⟨𝐴, 𝐵⟩ ∈ V ∧ ⟨𝐶, 𝐷⟩ ∈ V) → (⟨𝐴, 𝐵⟩ ~Q0𝐶, 𝐷⟩ ↔ ((⟨𝐴, 𝐵⟩ ∈ (ω × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ ⟨𝐶, 𝐷⟩ = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)))))
257, 8, 24syl2an 287 . 2 (((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) → (⟨𝐴, 𝐵⟩ ~Q0𝐶, 𝐷⟩ ↔ ((⟨𝐴, 𝐵⟩ ∈ (ω × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (ω × N)) ∧ ∃𝑧𝑤𝑣𝑢((⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ ⟨𝐶, 𝐷⟩ = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·o 𝑢) = (𝑤 ·o 𝑣)))))
26 opelxpi 4579 . . . 4 ((𝐴 ∈ ω ∧ 𝐵N) → ⟨𝐴, 𝐵⟩ ∈ (ω × N))
27 opelxpi 4579 . . . 4 ((𝐶 ∈ ω ∧ 𝐷N) → ⟨𝐶, 𝐷⟩ ∈ (ω × N))
2826, 27anim12i 336 . . 3 (((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) → (⟨𝐴, 𝐵⟩ ∈ (ω × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (ω × N)))
2928biantrurd 303 . 2 (((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) → ((𝐴 ·o 𝐷) = (𝐵 ·o 𝐶) ↔ ((⟨𝐴, 𝐵⟩ ∈ (ω × N) ∧ ⟨𝐶, 𝐷⟩ ∈ (ω × N)) ∧ (𝐴 ·o 𝐷) = (𝐵 ·o 𝐶))))
306, 25, 293bitr4d 219 1 (((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) → (⟨𝐴, 𝐵⟩ ~Q0𝐶, 𝐷⟩ ↔ (𝐴 ·o 𝐷) = (𝐵 ·o 𝐶)))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   = wceq 1332  ∃wex 1469   ∈ wcel 1481  Vcvv 2689  ⟨cop 3535   class class class wbr 3937  ωcom 4512   × cxp 4545  (class class class)co 5782   ·o comu 6319  Ncnpi 7105   ~Q0 ceq0 7119 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139 This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-xp 4553  df-iota 5096  df-fv 5139  df-ov 5785  df-enq0 7257 This theorem is referenced by:  enq0eceq  7270  nqnq0pi  7271  addcmpblnq0  7276  mulcmpblnq0  7277  mulcanenq0ec  7278  nnnq0lem1  7279
 Copyright terms: Public domain W3C validator