| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > enq0ex | GIF version | ||
| Description: The equivalence relation for positive fractions exists. (Contributed by Jim Kingdon, 18-Nov-2019.) |
| Ref | Expression |
|---|---|
| enq0ex | ⊢ ~Q0 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omex 4684 | . . . 4 ⊢ ω ∈ V | |
| 2 | niex 7495 | . . . 4 ⊢ N ∈ V | |
| 3 | 1, 2 | xpex 4833 | . . 3 ⊢ (ω × N) ∈ V |
| 4 | 3, 3 | xpex 4833 | . 2 ⊢ ((ω × N) × (ω × N)) ∈ V |
| 5 | df-enq0 7607 | . . 3 ⊢ ~Q0 = {〈𝑣, 𝑢〉 ∣ ((𝑣 ∈ (ω × N) ∧ 𝑢 ∈ (ω × N)) ∧ ∃𝑥∃𝑦∃𝑧∃𝑤((𝑣 = 〈𝑥, 𝑦〉 ∧ 𝑢 = 〈𝑧, 𝑤〉) ∧ (𝑥 ·o 𝑤) = (𝑦 ·o 𝑧)))} | |
| 6 | opabssxp 4792 | . . 3 ⊢ {〈𝑣, 𝑢〉 ∣ ((𝑣 ∈ (ω × N) ∧ 𝑢 ∈ (ω × N)) ∧ ∃𝑥∃𝑦∃𝑧∃𝑤((𝑣 = 〈𝑥, 𝑦〉 ∧ 𝑢 = 〈𝑧, 𝑤〉) ∧ (𝑥 ·o 𝑤) = (𝑦 ·o 𝑧)))} ⊆ ((ω × N) × (ω × N)) | |
| 7 | 5, 6 | eqsstri 3256 | . 2 ⊢ ~Q0 ⊆ ((ω × N) × (ω × N)) |
| 8 | 4, 7 | ssexi 4221 | 1 ⊢ ~Q0 ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1395 ∃wex 1538 ∈ wcel 2200 Vcvv 2799 〈cop 3669 {copab 4143 ωcom 4681 × cxp 4716 (class class class)co 6000 ·o comu 6558 Ncnpi 7455 ~Q0 ceq0 7469 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-iinf 4679 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-opab 4145 df-iom 4682 df-xp 4724 df-ni 7487 df-enq0 7607 |
| This theorem is referenced by: nqnq0 7624 addnnnq0 7632 mulnnnq0 7633 addclnq0 7634 mulclnq0 7635 prarloclemcalc 7685 |
| Copyright terms: Public domain | W3C validator |