![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > enq0ex | GIF version |
Description: The equivalence relation for positive fractions exists. (Contributed by Jim Kingdon, 18-Nov-2019.) |
Ref | Expression |
---|---|
enq0ex | ⊢ ~Q0 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omex 4626 | . . . 4 ⊢ ω ∈ V | |
2 | niex 7374 | . . . 4 ⊢ N ∈ V | |
3 | 1, 2 | xpex 4775 | . . 3 ⊢ (ω × N) ∈ V |
4 | 3, 3 | xpex 4775 | . 2 ⊢ ((ω × N) × (ω × N)) ∈ V |
5 | df-enq0 7486 | . . 3 ⊢ ~Q0 = {〈𝑣, 𝑢〉 ∣ ((𝑣 ∈ (ω × N) ∧ 𝑢 ∈ (ω × N)) ∧ ∃𝑥∃𝑦∃𝑧∃𝑤((𝑣 = 〈𝑥, 𝑦〉 ∧ 𝑢 = 〈𝑧, 𝑤〉) ∧ (𝑥 ·o 𝑤) = (𝑦 ·o 𝑧)))} | |
6 | opabssxp 4734 | . . 3 ⊢ {〈𝑣, 𝑢〉 ∣ ((𝑣 ∈ (ω × N) ∧ 𝑢 ∈ (ω × N)) ∧ ∃𝑥∃𝑦∃𝑧∃𝑤((𝑣 = 〈𝑥, 𝑦〉 ∧ 𝑢 = 〈𝑧, 𝑤〉) ∧ (𝑥 ·o 𝑤) = (𝑦 ·o 𝑧)))} ⊆ ((ω × N) × (ω × N)) | |
7 | 5, 6 | eqsstri 3212 | . 2 ⊢ ~Q0 ⊆ ((ω × N) × (ω × N)) |
8 | 4, 7 | ssexi 4168 | 1 ⊢ ~Q0 ∈ V |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1364 ∃wex 1503 ∈ wcel 2164 Vcvv 2760 〈cop 3622 {copab 4090 ωcom 4623 × cxp 4658 (class class class)co 5919 ·o comu 6469 Ncnpi 7334 ~Q0 ceq0 7348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-iinf 4621 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-opab 4092 df-iom 4624 df-xp 4666 df-ni 7366 df-enq0 7486 |
This theorem is referenced by: nqnq0 7503 addnnnq0 7511 mulnnnq0 7512 addclnq0 7513 mulclnq0 7514 prarloclemcalc 7564 |
Copyright terms: Public domain | W3C validator |