ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enq0ex GIF version

Theorem enq0ex 7371
Description: The equivalence relation for positive fractions exists. (Contributed by Jim Kingdon, 18-Nov-2019.)
Assertion
Ref Expression
enq0ex ~Q0 ∈ V

Proof of Theorem enq0ex
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omex 4564 . . . 4 ω ∈ V
2 niex 7244 . . . 4 N ∈ V
31, 2xpex 4713 . . 3 (ω × N) ∈ V
43, 3xpex 4713 . 2 ((ω × N) × (ω × N)) ∈ V
5 df-enq0 7356 . . 3 ~Q0 = {⟨𝑣, 𝑢⟩ ∣ ((𝑣 ∈ (ω × N) ∧ 𝑢 ∈ (ω × N)) ∧ ∃𝑥𝑦𝑧𝑤((𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝑢 = ⟨𝑧, 𝑤⟩) ∧ (𝑥 ·o 𝑤) = (𝑦 ·o 𝑧)))}
6 opabssxp 4672 . . 3 {⟨𝑣, 𝑢⟩ ∣ ((𝑣 ∈ (ω × N) ∧ 𝑢 ∈ (ω × N)) ∧ ∃𝑥𝑦𝑧𝑤((𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝑢 = ⟨𝑧, 𝑤⟩) ∧ (𝑥 ·o 𝑤) = (𝑦 ·o 𝑧)))} ⊆ ((ω × N) × (ω × N))
75, 6eqsstri 3169 . 2 ~Q0 ⊆ ((ω × N) × (ω × N))
84, 7ssexi 4114 1 ~Q0 ∈ V
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1342  wex 1479  wcel 2135  Vcvv 2721  cop 3573  {copab 4036  ωcom 4561   × cxp 4596  (class class class)co 5836   ·o comu 6373  Ncnpi 7204   ~Q0 ceq0 7218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-iinf 4559
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-nf 1448  df-sb 1750  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ral 2447  df-rex 2448  df-v 2723  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-opab 4038  df-iom 4562  df-xp 4604  df-ni 7236  df-enq0 7356
This theorem is referenced by:  nqnq0  7373  addnnnq0  7381  mulnnnq0  7382  addclnq0  7383  mulclnq0  7384  prarloclemcalc  7434
  Copyright terms: Public domain W3C validator