| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > enq0ex | GIF version | ||
| Description: The equivalence relation for positive fractions exists. (Contributed by Jim Kingdon, 18-Nov-2019.) | 
| Ref | Expression | 
|---|---|
| enq0ex | ⊢ ~Q0 ∈ V | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | omex 4629 | . . . 4 ⊢ ω ∈ V | |
| 2 | niex 7379 | . . . 4 ⊢ N ∈ V | |
| 3 | 1, 2 | xpex 4778 | . . 3 ⊢ (ω × N) ∈ V | 
| 4 | 3, 3 | xpex 4778 | . 2 ⊢ ((ω × N) × (ω × N)) ∈ V | 
| 5 | df-enq0 7491 | . . 3 ⊢ ~Q0 = {〈𝑣, 𝑢〉 ∣ ((𝑣 ∈ (ω × N) ∧ 𝑢 ∈ (ω × N)) ∧ ∃𝑥∃𝑦∃𝑧∃𝑤((𝑣 = 〈𝑥, 𝑦〉 ∧ 𝑢 = 〈𝑧, 𝑤〉) ∧ (𝑥 ·o 𝑤) = (𝑦 ·o 𝑧)))} | |
| 6 | opabssxp 4737 | . . 3 ⊢ {〈𝑣, 𝑢〉 ∣ ((𝑣 ∈ (ω × N) ∧ 𝑢 ∈ (ω × N)) ∧ ∃𝑥∃𝑦∃𝑧∃𝑤((𝑣 = 〈𝑥, 𝑦〉 ∧ 𝑢 = 〈𝑧, 𝑤〉) ∧ (𝑥 ·o 𝑤) = (𝑦 ·o 𝑧)))} ⊆ ((ω × N) × (ω × N)) | |
| 7 | 5, 6 | eqsstri 3215 | . 2 ⊢ ~Q0 ⊆ ((ω × N) × (ω × N)) | 
| 8 | 4, 7 | ssexi 4171 | 1 ⊢ ~Q0 ∈ V | 
| Colors of variables: wff set class | 
| Syntax hints: ∧ wa 104 = wceq 1364 ∃wex 1506 ∈ wcel 2167 Vcvv 2763 〈cop 3625 {copab 4093 ωcom 4626 × cxp 4661 (class class class)co 5922 ·o comu 6472 Ncnpi 7339 ~Q0 ceq0 7353 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-iinf 4624 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-opab 4095 df-iom 4627 df-xp 4669 df-ni 7371 df-enq0 7491 | 
| This theorem is referenced by: nqnq0 7508 addnnnq0 7516 mulnnnq0 7517 addclnq0 7518 mulclnq0 7519 prarloclemcalc 7569 | 
| Copyright terms: Public domain | W3C validator |