| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > enq0ex | GIF version | ||
| Description: The equivalence relation for positive fractions exists. (Contributed by Jim Kingdon, 18-Nov-2019.) |
| Ref | Expression |
|---|---|
| enq0ex | ⊢ ~Q0 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omex 4648 | . . . 4 ⊢ ω ∈ V | |
| 2 | niex 7440 | . . . 4 ⊢ N ∈ V | |
| 3 | 1, 2 | xpex 4797 | . . 3 ⊢ (ω × N) ∈ V |
| 4 | 3, 3 | xpex 4797 | . 2 ⊢ ((ω × N) × (ω × N)) ∈ V |
| 5 | df-enq0 7552 | . . 3 ⊢ ~Q0 = {〈𝑣, 𝑢〉 ∣ ((𝑣 ∈ (ω × N) ∧ 𝑢 ∈ (ω × N)) ∧ ∃𝑥∃𝑦∃𝑧∃𝑤((𝑣 = 〈𝑥, 𝑦〉 ∧ 𝑢 = 〈𝑧, 𝑤〉) ∧ (𝑥 ·o 𝑤) = (𝑦 ·o 𝑧)))} | |
| 6 | opabssxp 4756 | . . 3 ⊢ {〈𝑣, 𝑢〉 ∣ ((𝑣 ∈ (ω × N) ∧ 𝑢 ∈ (ω × N)) ∧ ∃𝑥∃𝑦∃𝑧∃𝑤((𝑣 = 〈𝑥, 𝑦〉 ∧ 𝑢 = 〈𝑧, 𝑤〉) ∧ (𝑥 ·o 𝑤) = (𝑦 ·o 𝑧)))} ⊆ ((ω × N) × (ω × N)) | |
| 7 | 5, 6 | eqsstri 3229 | . 2 ⊢ ~Q0 ⊆ ((ω × N) × (ω × N)) |
| 8 | 4, 7 | ssexi 4189 | 1 ⊢ ~Q0 ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1373 ∃wex 1516 ∈ wcel 2177 Vcvv 2773 〈cop 3640 {copab 4111 ωcom 4645 × cxp 4680 (class class class)co 5956 ·o comu 6512 Ncnpi 7400 ~Q0 ceq0 7414 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4169 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-iinf 4643 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-int 3891 df-opab 4113 df-iom 4646 df-xp 4688 df-ni 7432 df-enq0 7552 |
| This theorem is referenced by: nqnq0 7569 addnnnq0 7577 mulnnnq0 7578 addclnq0 7579 mulclnq0 7580 prarloclemcalc 7630 |
| Copyright terms: Public domain | W3C validator |