Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > enq0ex | GIF version |
Description: The equivalence relation for positive fractions exists. (Contributed by Jim Kingdon, 18-Nov-2019.) |
Ref | Expression |
---|---|
enq0ex | ⊢ ~Q0 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omex 4570 | . . . 4 ⊢ ω ∈ V | |
2 | niex 7253 | . . . 4 ⊢ N ∈ V | |
3 | 1, 2 | xpex 4719 | . . 3 ⊢ (ω × N) ∈ V |
4 | 3, 3 | xpex 4719 | . 2 ⊢ ((ω × N) × (ω × N)) ∈ V |
5 | df-enq0 7365 | . . 3 ⊢ ~Q0 = {〈𝑣, 𝑢〉 ∣ ((𝑣 ∈ (ω × N) ∧ 𝑢 ∈ (ω × N)) ∧ ∃𝑥∃𝑦∃𝑧∃𝑤((𝑣 = 〈𝑥, 𝑦〉 ∧ 𝑢 = 〈𝑧, 𝑤〉) ∧ (𝑥 ·o 𝑤) = (𝑦 ·o 𝑧)))} | |
6 | opabssxp 4678 | . . 3 ⊢ {〈𝑣, 𝑢〉 ∣ ((𝑣 ∈ (ω × N) ∧ 𝑢 ∈ (ω × N)) ∧ ∃𝑥∃𝑦∃𝑧∃𝑤((𝑣 = 〈𝑥, 𝑦〉 ∧ 𝑢 = 〈𝑧, 𝑤〉) ∧ (𝑥 ·o 𝑤) = (𝑦 ·o 𝑧)))} ⊆ ((ω × N) × (ω × N)) | |
7 | 5, 6 | eqsstri 3174 | . 2 ⊢ ~Q0 ⊆ ((ω × N) × (ω × N)) |
8 | 4, 7 | ssexi 4120 | 1 ⊢ ~Q0 ∈ V |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1343 ∃wex 1480 ∈ wcel 2136 Vcvv 2726 〈cop 3579 {copab 4042 ωcom 4567 × cxp 4602 (class class class)co 5842 ·o comu 6382 Ncnpi 7213 ~Q0 ceq0 7227 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-opab 4044 df-iom 4568 df-xp 4610 df-ni 7245 df-enq0 7365 |
This theorem is referenced by: nqnq0 7382 addnnnq0 7390 mulnnnq0 7391 addclnq0 7392 mulclnq0 7393 prarloclemcalc 7443 |
Copyright terms: Public domain | W3C validator |