| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > enq0ex | GIF version | ||
| Description: The equivalence relation for positive fractions exists. (Contributed by Jim Kingdon, 18-Nov-2019.) |
| Ref | Expression |
|---|---|
| enq0ex | ⊢ ~Q0 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omex 4630 | . . . 4 ⊢ ω ∈ V | |
| 2 | niex 7396 | . . . 4 ⊢ N ∈ V | |
| 3 | 1, 2 | xpex 4779 | . . 3 ⊢ (ω × N) ∈ V |
| 4 | 3, 3 | xpex 4779 | . 2 ⊢ ((ω × N) × (ω × N)) ∈ V |
| 5 | df-enq0 7508 | . . 3 ⊢ ~Q0 = {〈𝑣, 𝑢〉 ∣ ((𝑣 ∈ (ω × N) ∧ 𝑢 ∈ (ω × N)) ∧ ∃𝑥∃𝑦∃𝑧∃𝑤((𝑣 = 〈𝑥, 𝑦〉 ∧ 𝑢 = 〈𝑧, 𝑤〉) ∧ (𝑥 ·o 𝑤) = (𝑦 ·o 𝑧)))} | |
| 6 | opabssxp 4738 | . . 3 ⊢ {〈𝑣, 𝑢〉 ∣ ((𝑣 ∈ (ω × N) ∧ 𝑢 ∈ (ω × N)) ∧ ∃𝑥∃𝑦∃𝑧∃𝑤((𝑣 = 〈𝑥, 𝑦〉 ∧ 𝑢 = 〈𝑧, 𝑤〉) ∧ (𝑥 ·o 𝑤) = (𝑦 ·o 𝑧)))} ⊆ ((ω × N) × (ω × N)) | |
| 7 | 5, 6 | eqsstri 3216 | . 2 ⊢ ~Q0 ⊆ ((ω × N) × (ω × N)) |
| 8 | 4, 7 | ssexi 4172 | 1 ⊢ ~Q0 ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1364 ∃wex 1506 ∈ wcel 2167 Vcvv 2763 〈cop 3626 {copab 4094 ωcom 4627 × cxp 4662 (class class class)co 5925 ·o comu 6481 Ncnpi 7356 ~Q0 ceq0 7370 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-opab 4096 df-iom 4628 df-xp 4670 df-ni 7388 df-enq0 7508 |
| This theorem is referenced by: nqnq0 7525 addnnnq0 7533 mulnnnq0 7534 addclnq0 7535 mulclnq0 7536 prarloclemcalc 7586 |
| Copyright terms: Public domain | W3C validator |