ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enq0ex GIF version

Theorem enq0ex 7501
Description: The equivalence relation for positive fractions exists. (Contributed by Jim Kingdon, 18-Nov-2019.)
Assertion
Ref Expression
enq0ex ~Q0 ∈ V

Proof of Theorem enq0ex
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omex 4626 . . . 4 ω ∈ V
2 niex 7374 . . . 4 N ∈ V
31, 2xpex 4775 . . 3 (ω × N) ∈ V
43, 3xpex 4775 . 2 ((ω × N) × (ω × N)) ∈ V
5 df-enq0 7486 . . 3 ~Q0 = {⟨𝑣, 𝑢⟩ ∣ ((𝑣 ∈ (ω × N) ∧ 𝑢 ∈ (ω × N)) ∧ ∃𝑥𝑦𝑧𝑤((𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝑢 = ⟨𝑧, 𝑤⟩) ∧ (𝑥 ·o 𝑤) = (𝑦 ·o 𝑧)))}
6 opabssxp 4734 . . 3 {⟨𝑣, 𝑢⟩ ∣ ((𝑣 ∈ (ω × N) ∧ 𝑢 ∈ (ω × N)) ∧ ∃𝑥𝑦𝑧𝑤((𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝑢 = ⟨𝑧, 𝑤⟩) ∧ (𝑥 ·o 𝑤) = (𝑦 ·o 𝑧)))} ⊆ ((ω × N) × (ω × N))
75, 6eqsstri 3212 . 2 ~Q0 ⊆ ((ω × N) × (ω × N))
84, 7ssexi 4168 1 ~Q0 ∈ V
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1364  wex 1503  wcel 2164  Vcvv 2760  cop 3622  {copab 4090  ωcom 4623   × cxp 4658  (class class class)co 5919   ·o comu 6469  Ncnpi 7334   ~Q0 ceq0 7348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-opab 4092  df-iom 4624  df-xp 4666  df-ni 7366  df-enq0 7486
This theorem is referenced by:  nqnq0  7503  addnnnq0  7511  mulnnnq0  7512  addclnq0  7513  mulclnq0  7514  prarloclemcalc  7564
  Copyright terms: Public domain W3C validator