ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enq0ex GIF version

Theorem enq0ex 7622
Description: The equivalence relation for positive fractions exists. (Contributed by Jim Kingdon, 18-Nov-2019.)
Assertion
Ref Expression
enq0ex ~Q0 ∈ V

Proof of Theorem enq0ex
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omex 4684 . . . 4 ω ∈ V
2 niex 7495 . . . 4 N ∈ V
31, 2xpex 4833 . . 3 (ω × N) ∈ V
43, 3xpex 4833 . 2 ((ω × N) × (ω × N)) ∈ V
5 df-enq0 7607 . . 3 ~Q0 = {⟨𝑣, 𝑢⟩ ∣ ((𝑣 ∈ (ω × N) ∧ 𝑢 ∈ (ω × N)) ∧ ∃𝑥𝑦𝑧𝑤((𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝑢 = ⟨𝑧, 𝑤⟩) ∧ (𝑥 ·o 𝑤) = (𝑦 ·o 𝑧)))}
6 opabssxp 4792 . . 3 {⟨𝑣, 𝑢⟩ ∣ ((𝑣 ∈ (ω × N) ∧ 𝑢 ∈ (ω × N)) ∧ ∃𝑥𝑦𝑧𝑤((𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝑢 = ⟨𝑧, 𝑤⟩) ∧ (𝑥 ·o 𝑤) = (𝑦 ·o 𝑧)))} ⊆ ((ω × N) × (ω × N))
75, 6eqsstri 3256 . 2 ~Q0 ⊆ ((ω × N) × (ω × N))
84, 7ssexi 4221 1 ~Q0 ∈ V
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1395  wex 1538  wcel 2200  Vcvv 2799  cop 3669  {copab 4143  ωcom 4681   × cxp 4716  (class class class)co 6000   ·o comu 6558  Ncnpi 7455   ~Q0 ceq0 7469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-opab 4145  df-iom 4682  df-xp 4724  df-ni 7487  df-enq0 7607
This theorem is referenced by:  nqnq0  7624  addnnnq0  7632  mulnnnq0  7633  addclnq0  7634  mulclnq0  7635  prarloclemcalc  7685
  Copyright terms: Public domain W3C validator