ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enq0ex GIF version

Theorem enq0ex 7523
Description: The equivalence relation for positive fractions exists. (Contributed by Jim Kingdon, 18-Nov-2019.)
Assertion
Ref Expression
enq0ex ~Q0 ∈ V

Proof of Theorem enq0ex
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omex 4630 . . . 4 ω ∈ V
2 niex 7396 . . . 4 N ∈ V
31, 2xpex 4779 . . 3 (ω × N) ∈ V
43, 3xpex 4779 . 2 ((ω × N) × (ω × N)) ∈ V
5 df-enq0 7508 . . 3 ~Q0 = {⟨𝑣, 𝑢⟩ ∣ ((𝑣 ∈ (ω × N) ∧ 𝑢 ∈ (ω × N)) ∧ ∃𝑥𝑦𝑧𝑤((𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝑢 = ⟨𝑧, 𝑤⟩) ∧ (𝑥 ·o 𝑤) = (𝑦 ·o 𝑧)))}
6 opabssxp 4738 . . 3 {⟨𝑣, 𝑢⟩ ∣ ((𝑣 ∈ (ω × N) ∧ 𝑢 ∈ (ω × N)) ∧ ∃𝑥𝑦𝑧𝑤((𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝑢 = ⟨𝑧, 𝑤⟩) ∧ (𝑥 ·o 𝑤) = (𝑦 ·o 𝑧)))} ⊆ ((ω × N) × (ω × N))
75, 6eqsstri 3216 . 2 ~Q0 ⊆ ((ω × N) × (ω × N))
84, 7ssexi 4172 1 ~Q0 ∈ V
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1364  wex 1506  wcel 2167  Vcvv 2763  cop 3626  {copab 4094  ωcom 4627   × cxp 4662  (class class class)co 5925   ·o comu 6481  Ncnpi 7356   ~Q0 ceq0 7370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-opab 4096  df-iom 4628  df-xp 4670  df-ni 7388  df-enq0 7508
This theorem is referenced by:  nqnq0  7525  addnnnq0  7533  mulnnnq0  7534  addclnq0  7535  mulclnq0  7536  prarloclemcalc  7586
  Copyright terms: Public domain W3C validator