ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltnnnq GIF version

Theorem ltnnnq 7549
Description: Ordering of positive integers via <N or <Q is equivalent. (Contributed by Jim Kingdon, 3-Oct-2020.)
Assertion
Ref Expression
ltnnnq ((𝐴N𝐵N) → (𝐴 <N 𝐵 ↔ [⟨𝐴, 1o⟩] ~Q <Q [⟨𝐵, 1o⟩] ~Q ))

Proof of Theorem ltnnnq
StepHypRef Expression
1 simpl 109 . . 3 ((𝐴N𝐵N) → 𝐴N)
2 1pi 7441 . . . 4 1oN
32a1i 9 . . 3 ((𝐴N𝐵N) → 1oN)
4 simpr 110 . . 3 ((𝐴N𝐵N) → 𝐵N)
5 ordpipqqs 7500 . . 3 (((𝐴N ∧ 1oN) ∧ (𝐵N ∧ 1oN)) → ([⟨𝐴, 1o⟩] ~Q <Q [⟨𝐵, 1o⟩] ~Q ↔ (𝐴 ·N 1o) <N (1o ·N 𝐵)))
61, 3, 4, 3, 5syl22anc 1251 . 2 ((𝐴N𝐵N) → ([⟨𝐴, 1o⟩] ~Q <Q [⟨𝐵, 1o⟩] ~Q ↔ (𝐴 ·N 1o) <N (1o ·N 𝐵)))
7 mulidpi 7444 . . . 4 (𝐴N → (𝐴 ·N 1o) = 𝐴)
81, 7syl 14 . . 3 ((𝐴N𝐵N) → (𝐴 ·N 1o) = 𝐴)
9 mulcompig 7457 . . . . 5 ((1oN𝐵N) → (1o ·N 𝐵) = (𝐵 ·N 1o))
102, 4, 9sylancr 414 . . . 4 ((𝐴N𝐵N) → (1o ·N 𝐵) = (𝐵 ·N 1o))
11 mulidpi 7444 . . . . 5 (𝐵N → (𝐵 ·N 1o) = 𝐵)
124, 11syl 14 . . . 4 ((𝐴N𝐵N) → (𝐵 ·N 1o) = 𝐵)
1310, 12eqtrd 2239 . . 3 ((𝐴N𝐵N) → (1o ·N 𝐵) = 𝐵)
148, 13breq12d 4061 . 2 ((𝐴N𝐵N) → ((𝐴 ·N 1o) <N (1o ·N 𝐵) ↔ 𝐴 <N 𝐵))
156, 14bitr2d 189 1 ((𝐴N𝐵N) → (𝐴 <N 𝐵 ↔ [⟨𝐴, 1o⟩] ~Q <Q [⟨𝐵, 1o⟩] ~Q ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177  cop 3638   class class class wbr 4048  (class class class)co 5954  1oc1o 6505  [cec 6628  Ncnpi 7398   ·N cmi 7400   <N clti 7401   ~Q ceq 7405   <Q cltq 7411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4164  ax-sep 4167  ax-nul 4175  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-iinf 4641
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-iun 3932  df-br 4049  df-opab 4111  df-mpt 4112  df-tr 4148  df-eprel 4341  df-id 4345  df-iord 4418  df-on 4420  df-suc 4423  df-iom 4644  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-fv 5285  df-ov 5957  df-oprab 5958  df-mpo 5959  df-1st 6236  df-2nd 6237  df-recs 6401  df-irdg 6466  df-1o 6512  df-oadd 6516  df-omul 6517  df-er 6630  df-ec 6632  df-qs 6636  df-ni 7430  df-mi 7432  df-lti 7433  df-enq 7473  df-nqqs 7474  df-ltnqqs 7479
This theorem is referenced by:  caucvgprlemk  7791  caucvgprprlemk  7809  ltrennb  7980
  Copyright terms: Public domain W3C validator