ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltnnnq GIF version

Theorem ltnnnq 7453
Description: Ordering of positive integers via <N or <Q is equivalent. (Contributed by Jim Kingdon, 3-Oct-2020.)
Assertion
Ref Expression
ltnnnq ((𝐴N𝐵N) → (𝐴 <N 𝐵 ↔ [⟨𝐴, 1o⟩] ~Q <Q [⟨𝐵, 1o⟩] ~Q ))

Proof of Theorem ltnnnq
StepHypRef Expression
1 simpl 109 . . 3 ((𝐴N𝐵N) → 𝐴N)
2 1pi 7345 . . . 4 1oN
32a1i 9 . . 3 ((𝐴N𝐵N) → 1oN)
4 simpr 110 . . 3 ((𝐴N𝐵N) → 𝐵N)
5 ordpipqqs 7404 . . 3 (((𝐴N ∧ 1oN) ∧ (𝐵N ∧ 1oN)) → ([⟨𝐴, 1o⟩] ~Q <Q [⟨𝐵, 1o⟩] ~Q ↔ (𝐴 ·N 1o) <N (1o ·N 𝐵)))
61, 3, 4, 3, 5syl22anc 1250 . 2 ((𝐴N𝐵N) → ([⟨𝐴, 1o⟩] ~Q <Q [⟨𝐵, 1o⟩] ~Q ↔ (𝐴 ·N 1o) <N (1o ·N 𝐵)))
7 mulidpi 7348 . . . 4 (𝐴N → (𝐴 ·N 1o) = 𝐴)
81, 7syl 14 . . 3 ((𝐴N𝐵N) → (𝐴 ·N 1o) = 𝐴)
9 mulcompig 7361 . . . . 5 ((1oN𝐵N) → (1o ·N 𝐵) = (𝐵 ·N 1o))
102, 4, 9sylancr 414 . . . 4 ((𝐴N𝐵N) → (1o ·N 𝐵) = (𝐵 ·N 1o))
11 mulidpi 7348 . . . . 5 (𝐵N → (𝐵 ·N 1o) = 𝐵)
124, 11syl 14 . . . 4 ((𝐴N𝐵N) → (𝐵 ·N 1o) = 𝐵)
1310, 12eqtrd 2222 . . 3 ((𝐴N𝐵N) → (1o ·N 𝐵) = 𝐵)
148, 13breq12d 4031 . 2 ((𝐴N𝐵N) → ((𝐴 ·N 1o) <N (1o ·N 𝐵) ↔ 𝐴 <N 𝐵))
156, 14bitr2d 189 1 ((𝐴N𝐵N) → (𝐴 <N 𝐵 ↔ [⟨𝐴, 1o⟩] ~Q <Q [⟨𝐵, 1o⟩] ~Q ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2160  cop 3610   class class class wbr 4018  (class class class)co 5897  1oc1o 6435  [cec 6558  Ncnpi 7302   ·N cmi 7304   <N clti 7305   ~Q ceq 7309   <Q cltq 7315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-eprel 4307  df-id 4311  df-iord 4384  df-on 4386  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-recs 6331  df-irdg 6396  df-1o 6442  df-oadd 6446  df-omul 6447  df-er 6560  df-ec 6562  df-qs 6566  df-ni 7334  df-mi 7336  df-lti 7337  df-enq 7377  df-nqqs 7378  df-ltnqqs 7383
This theorem is referenced by:  caucvgprlemk  7695  caucvgprprlemk  7713  ltrennb  7884
  Copyright terms: Public domain W3C validator