| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltnnnq | GIF version | ||
| Description: Ordering of positive integers via <N or <Q is equivalent. (Contributed by Jim Kingdon, 3-Oct-2020.) |
| Ref | Expression |
|---|---|
| ltnnnq | ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 <N 𝐵 ↔ [〈𝐴, 1o〉] ~Q <Q [〈𝐵, 1o〉] ~Q )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → 𝐴 ∈ N) | |
| 2 | 1pi 7510 | . . . 4 ⊢ 1o ∈ N | |
| 3 | 2 | a1i 9 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → 1o ∈ N) |
| 4 | simpr 110 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → 𝐵 ∈ N) | |
| 5 | ordpipqqs 7569 | . . 3 ⊢ (((𝐴 ∈ N ∧ 1o ∈ N) ∧ (𝐵 ∈ N ∧ 1o ∈ N)) → ([〈𝐴, 1o〉] ~Q <Q [〈𝐵, 1o〉] ~Q ↔ (𝐴 ·N 1o) <N (1o ·N 𝐵))) | |
| 6 | 1, 3, 4, 3, 5 | syl22anc 1272 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → ([〈𝐴, 1o〉] ~Q <Q [〈𝐵, 1o〉] ~Q ↔ (𝐴 ·N 1o) <N (1o ·N 𝐵))) |
| 7 | mulidpi 7513 | . . . 4 ⊢ (𝐴 ∈ N → (𝐴 ·N 1o) = 𝐴) | |
| 8 | 1, 7 | syl 14 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·N 1o) = 𝐴) |
| 9 | mulcompig 7526 | . . . . 5 ⊢ ((1o ∈ N ∧ 𝐵 ∈ N) → (1o ·N 𝐵) = (𝐵 ·N 1o)) | |
| 10 | 2, 4, 9 | sylancr 414 | . . . 4 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (1o ·N 𝐵) = (𝐵 ·N 1o)) |
| 11 | mulidpi 7513 | . . . . 5 ⊢ (𝐵 ∈ N → (𝐵 ·N 1o) = 𝐵) | |
| 12 | 4, 11 | syl 14 | . . . 4 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐵 ·N 1o) = 𝐵) |
| 13 | 10, 12 | eqtrd 2262 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (1o ·N 𝐵) = 𝐵) |
| 14 | 8, 13 | breq12d 4096 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → ((𝐴 ·N 1o) <N (1o ·N 𝐵) ↔ 𝐴 <N 𝐵)) |
| 15 | 6, 14 | bitr2d 189 | 1 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 <N 𝐵 ↔ [〈𝐴, 1o〉] ~Q <Q [〈𝐵, 1o〉] ~Q )) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 〈cop 3669 class class class wbr 4083 (class class class)co 6007 1oc1o 6561 [cec 6686 Ncnpi 7467 ·N cmi 7469 <N clti 7470 ~Q ceq 7474 <Q cltq 7480 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-eprel 4380 df-id 4384 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-irdg 6522 df-1o 6568 df-oadd 6572 df-omul 6573 df-er 6688 df-ec 6690 df-qs 6694 df-ni 7499 df-mi 7501 df-lti 7502 df-enq 7542 df-nqqs 7543 df-ltnqqs 7548 |
| This theorem is referenced by: caucvgprlemk 7860 caucvgprprlemk 7878 ltrennb 8049 |
| Copyright terms: Public domain | W3C validator |