| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltnnnq | GIF version | ||
| Description: Ordering of positive integers via <N or <Q is equivalent. (Contributed by Jim Kingdon, 3-Oct-2020.) |
| Ref | Expression |
|---|---|
| ltnnnq | ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 <N 𝐵 ↔ [〈𝐴, 1o〉] ~Q <Q [〈𝐵, 1o〉] ~Q )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → 𝐴 ∈ N) | |
| 2 | 1pi 7441 | . . . 4 ⊢ 1o ∈ N | |
| 3 | 2 | a1i 9 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → 1o ∈ N) |
| 4 | simpr 110 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → 𝐵 ∈ N) | |
| 5 | ordpipqqs 7500 | . . 3 ⊢ (((𝐴 ∈ N ∧ 1o ∈ N) ∧ (𝐵 ∈ N ∧ 1o ∈ N)) → ([〈𝐴, 1o〉] ~Q <Q [〈𝐵, 1o〉] ~Q ↔ (𝐴 ·N 1o) <N (1o ·N 𝐵))) | |
| 6 | 1, 3, 4, 3, 5 | syl22anc 1251 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → ([〈𝐴, 1o〉] ~Q <Q [〈𝐵, 1o〉] ~Q ↔ (𝐴 ·N 1o) <N (1o ·N 𝐵))) |
| 7 | mulidpi 7444 | . . . 4 ⊢ (𝐴 ∈ N → (𝐴 ·N 1o) = 𝐴) | |
| 8 | 1, 7 | syl 14 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·N 1o) = 𝐴) |
| 9 | mulcompig 7457 | . . . . 5 ⊢ ((1o ∈ N ∧ 𝐵 ∈ N) → (1o ·N 𝐵) = (𝐵 ·N 1o)) | |
| 10 | 2, 4, 9 | sylancr 414 | . . . 4 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (1o ·N 𝐵) = (𝐵 ·N 1o)) |
| 11 | mulidpi 7444 | . . . . 5 ⊢ (𝐵 ∈ N → (𝐵 ·N 1o) = 𝐵) | |
| 12 | 4, 11 | syl 14 | . . . 4 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐵 ·N 1o) = 𝐵) |
| 13 | 10, 12 | eqtrd 2239 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (1o ·N 𝐵) = 𝐵) |
| 14 | 8, 13 | breq12d 4061 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → ((𝐴 ·N 1o) <N (1o ·N 𝐵) ↔ 𝐴 <N 𝐵)) |
| 15 | 6, 14 | bitr2d 189 | 1 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 <N 𝐵 ↔ [〈𝐴, 1o〉] ~Q <Q [〈𝐵, 1o〉] ~Q )) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2177 〈cop 3638 class class class wbr 4048 (class class class)co 5954 1oc1o 6505 [cec 6628 Ncnpi 7398 ·N cmi 7400 <N clti 7401 ~Q ceq 7405 <Q cltq 7411 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4164 ax-sep 4167 ax-nul 4175 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-iinf 4641 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-iun 3932 df-br 4049 df-opab 4111 df-mpt 4112 df-tr 4148 df-eprel 4341 df-id 4345 df-iord 4418 df-on 4420 df-suc 4423 df-iom 4644 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-ov 5957 df-oprab 5958 df-mpo 5959 df-1st 6236 df-2nd 6237 df-recs 6401 df-irdg 6466 df-1o 6512 df-oadd 6516 df-omul 6517 df-er 6630 df-ec 6632 df-qs 6636 df-ni 7430 df-mi 7432 df-lti 7433 df-enq 7473 df-nqqs 7474 df-ltnqqs 7479 |
| This theorem is referenced by: caucvgprlemk 7791 caucvgprprlemk 7809 ltrennb 7980 |
| Copyright terms: Public domain | W3C validator |