ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltnnnq GIF version

Theorem ltnnnq 7372
Description: Ordering of positive integers via <N or <Q is equivalent. (Contributed by Jim Kingdon, 3-Oct-2020.)
Assertion
Ref Expression
ltnnnq ((𝐴N𝐵N) → (𝐴 <N 𝐵 ↔ [⟨𝐴, 1o⟩] ~Q <Q [⟨𝐵, 1o⟩] ~Q ))

Proof of Theorem ltnnnq
StepHypRef Expression
1 simpl 108 . . 3 ((𝐴N𝐵N) → 𝐴N)
2 1pi 7264 . . . 4 1oN
32a1i 9 . . 3 ((𝐴N𝐵N) → 1oN)
4 simpr 109 . . 3 ((𝐴N𝐵N) → 𝐵N)
5 ordpipqqs 7323 . . 3 (((𝐴N ∧ 1oN) ∧ (𝐵N ∧ 1oN)) → ([⟨𝐴, 1o⟩] ~Q <Q [⟨𝐵, 1o⟩] ~Q ↔ (𝐴 ·N 1o) <N (1o ·N 𝐵)))
61, 3, 4, 3, 5syl22anc 1234 . 2 ((𝐴N𝐵N) → ([⟨𝐴, 1o⟩] ~Q <Q [⟨𝐵, 1o⟩] ~Q ↔ (𝐴 ·N 1o) <N (1o ·N 𝐵)))
7 mulidpi 7267 . . . 4 (𝐴N → (𝐴 ·N 1o) = 𝐴)
81, 7syl 14 . . 3 ((𝐴N𝐵N) → (𝐴 ·N 1o) = 𝐴)
9 mulcompig 7280 . . . . 5 ((1oN𝐵N) → (1o ·N 𝐵) = (𝐵 ·N 1o))
102, 4, 9sylancr 412 . . . 4 ((𝐴N𝐵N) → (1o ·N 𝐵) = (𝐵 ·N 1o))
11 mulidpi 7267 . . . . 5 (𝐵N → (𝐵 ·N 1o) = 𝐵)
124, 11syl 14 . . . 4 ((𝐴N𝐵N) → (𝐵 ·N 1o) = 𝐵)
1310, 12eqtrd 2203 . . 3 ((𝐴N𝐵N) → (1o ·N 𝐵) = 𝐵)
148, 13breq12d 4000 . 2 ((𝐴N𝐵N) → ((𝐴 ·N 1o) <N (1o ·N 𝐵) ↔ 𝐴 <N 𝐵))
156, 14bitr2d 188 1 ((𝐴N𝐵N) → (𝐴 <N 𝐵 ↔ [⟨𝐴, 1o⟩] ~Q <Q [⟨𝐵, 1o⟩] ~Q ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348  wcel 2141  cop 3584   class class class wbr 3987  (class class class)co 5850  1oc1o 6385  [cec 6507  Ncnpi 7221   ·N cmi 7223   <N clti 7224   ~Q ceq 7228   <Q cltq 7234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-eprel 4272  df-id 4276  df-iord 4349  df-on 4351  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-ov 5853  df-oprab 5854  df-mpo 5855  df-1st 6116  df-2nd 6117  df-recs 6281  df-irdg 6346  df-1o 6392  df-oadd 6396  df-omul 6397  df-er 6509  df-ec 6511  df-qs 6515  df-ni 7253  df-mi 7255  df-lti 7256  df-enq 7296  df-nqqs 7297  df-ltnqqs 7302
This theorem is referenced by:  caucvgprlemk  7614  caucvgprprlemk  7632  ltrennb  7803
  Copyright terms: Public domain W3C validator