| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-res | GIF version | ||
| Description: Define the restriction of a class. Definition 6.6(1) of [TakeutiZaring] p. 24. For example, (𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → (𝐹 ↾ 𝐵) = {〈2, 6〉}. We do not introduce a special syntax for the corestriction of a class: it will be expressed either as the intersection (𝐴 ∩ (V × 𝐵)) or as the converse of the restricted converse. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| df-res | ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | 1, 2 | cres 4721 | . 2 class (𝐴 ↾ 𝐵) |
| 4 | cvv 2799 | . . . 4 class V | |
| 5 | 2, 4 | cxp 4717 | . . 3 class (𝐵 × V) |
| 6 | 1, 5 | cin 3196 | . 2 class (𝐴 ∩ (𝐵 × V)) |
| 7 | 3, 6 | wceq 1395 | 1 wff (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) |
| Colors of variables: wff set class |
| This definition is referenced by: reseq1 4999 reseq2 5000 nfres 5007 csbresg 5008 res0 5009 opelres 5010 resres 5017 resundi 5018 resundir 5019 resindi 5020 resindir 5021 inres 5022 resdifcom 5023 resiun1 5024 resiun2 5025 resss 5029 ssres 5031 ssres2 5032 relres 5033 xpssres 5040 resopab 5049 ssrnres 5171 imainrect 5174 xpima1 5175 xpima2m 5176 cnvcnv2 5182 resdmres 5220 nfvres 5665 ressnop0 5824 |
| Copyright terms: Public domain | W3C validator |