| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-res | GIF version | ||
| Description: Define the restriction of a class. Definition 6.6(1) of [TakeutiZaring] p. 24. For example, (𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → (𝐹 ↾ 𝐵) = {〈2, 6〉}. We do not introduce a special syntax for the corestriction of a class: it will be expressed either as the intersection (𝐴 ∩ (V × 𝐵)) or as the converse of the restricted converse. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| df-res | ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | 1, 2 | cres 4698 | . 2 class (𝐴 ↾ 𝐵) |
| 4 | cvv 2779 | . . . 4 class V | |
| 5 | 2, 4 | cxp 4694 | . . 3 class (𝐵 × V) |
| 6 | 1, 5 | cin 3176 | . 2 class (𝐴 ∩ (𝐵 × V)) |
| 7 | 3, 6 | wceq 1375 | 1 wff (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) |
| Colors of variables: wff set class |
| This definition is referenced by: reseq1 4975 reseq2 4976 nfres 4983 csbresg 4984 res0 4985 opelres 4986 resres 4993 resundi 4994 resundir 4995 resindi 4996 resindir 4997 inres 4998 resdifcom 4999 resiun1 5000 resiun2 5001 resss 5005 ssres 5007 ssres2 5008 relres 5009 xpssres 5016 resopab 5025 ssrnres 5147 imainrect 5150 xpima1 5151 xpima2m 5152 cnvcnv2 5158 resdmres 5196 nfvres 5637 ressnop0 5793 |
| Copyright terms: Public domain | W3C validator |