![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-res | GIF version |
Description: Define the restriction of a class. Definition 6.6(1) of [TakeutiZaring] p. 24. For example, (𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → (𝐹 ↾ 𝐵) = {〈2, 6〉}. We do not introduce a special syntax for the corestriction of a class: it will be expressed either as the intersection (𝐴 ∩ (V × 𝐵)) or as the converse of the restricted converse. (Contributed by NM, 2-Aug-1994.) |
Ref | Expression |
---|---|
df-res | ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | 1, 2 | cres 4661 | . 2 class (𝐴 ↾ 𝐵) |
4 | cvv 2760 | . . . 4 class V | |
5 | 2, 4 | cxp 4657 | . . 3 class (𝐵 × V) |
6 | 1, 5 | cin 3152 | . 2 class (𝐴 ∩ (𝐵 × V)) |
7 | 3, 6 | wceq 1364 | 1 wff (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) |
Colors of variables: wff set class |
This definition is referenced by: reseq1 4936 reseq2 4937 nfres 4944 csbresg 4945 res0 4946 opelres 4947 resres 4954 resundi 4955 resundir 4956 resindi 4957 resindir 4958 inres 4959 resdifcom 4960 resiun1 4961 resiun2 4962 resss 4966 ssres 4968 ssres2 4969 relres 4970 xpssres 4977 resopab 4986 ssrnres 5108 imainrect 5111 xpima1 5112 xpima2m 5113 cnvcnv2 5119 resdmres 5157 nfvres 5588 ressnop0 5739 |
Copyright terms: Public domain | W3C validator |