Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-res | GIF version |
Description: Define the restriction of a class. Definition 6.6(1) of [TakeutiZaring] p. 24. For example, (𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → (𝐹 ↾ 𝐵) = {〈2, 6〉}. We do not introduce a special syntax for the corestriction of a class: it will be expressed either as the intersection (𝐴 ∩ (V × 𝐵)) or as the converse of the restricted converse. (Contributed by NM, 2-Aug-1994.) |
Ref | Expression |
---|---|
df-res | ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | 1, 2 | cres 4606 | . 2 class (𝐴 ↾ 𝐵) |
4 | cvv 2726 | . . . 4 class V | |
5 | 2, 4 | cxp 4602 | . . 3 class (𝐵 × V) |
6 | 1, 5 | cin 3115 | . 2 class (𝐴 ∩ (𝐵 × V)) |
7 | 3, 6 | wceq 1343 | 1 wff (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) |
Colors of variables: wff set class |
This definition is referenced by: reseq1 4878 reseq2 4879 nfres 4886 csbresg 4887 res0 4888 opelres 4889 resres 4896 resundi 4897 resundir 4898 resindi 4899 resindir 4900 inres 4901 resdifcom 4902 resiun1 4903 resiun2 4904 resss 4908 ssres 4910 ssres2 4911 relres 4912 xpssres 4919 resopab 4928 ssrnres 5046 imainrect 5049 xpima1 5050 xpima2m 5051 cnvcnv2 5057 resdmres 5095 nfvres 5519 ressnop0 5666 |
Copyright terms: Public domain | W3C validator |