![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-res | GIF version |
Description: Define the restriction of a class. Definition 6.6(1) of [TakeutiZaring] p. 24. For example, (𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → (𝐹 ↾ 𝐵) = {⟨2, 6⟩}. We do not introduce a special syntax for the corestriction of a class: it will be expressed either as the intersection (𝐴 ∩ (V × 𝐵)) or as the converse of the restricted converse. (Contributed by NM, 2-Aug-1994.) |
Ref | Expression |
---|---|
df-res | ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | 1, 2 | cres 4629 | . 2 class (𝐴 ↾ 𝐵) |
4 | cvv 2738 | . . . 4 class V | |
5 | 2, 4 | cxp 4625 | . . 3 class (𝐵 × V) |
6 | 1, 5 | cin 3129 | . 2 class (𝐴 ∩ (𝐵 × V)) |
7 | 3, 6 | wceq 1353 | 1 wff (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) |
Colors of variables: wff set class |
This definition is referenced by: reseq1 4902 reseq2 4903 nfres 4910 csbresg 4911 res0 4912 opelres 4913 resres 4920 resundi 4921 resundir 4922 resindi 4923 resindir 4924 inres 4925 resdifcom 4926 resiun1 4927 resiun2 4928 resss 4932 ssres 4934 ssres2 4935 relres 4936 xpssres 4943 resopab 4952 ssrnres 5072 imainrect 5075 xpima1 5076 xpima2m 5077 cnvcnv2 5083 resdmres 5121 nfvres 5549 ressnop0 5698 |
Copyright terms: Public domain | W3C validator |