![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-res | GIF version |
Description: Define the restriction of a class. Definition 6.6(1) of [TakeutiZaring] p. 24. For example, (𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → (𝐹 ↾ 𝐵) = {〈2, 6〉}. We do not introduce a special syntax for the corestriction of a class: it will be expressed either as the intersection (𝐴 ∩ (V × 𝐵)) or as the converse of the restricted converse. (Contributed by NM, 2-Aug-1994.) |
Ref | Expression |
---|---|
df-res | ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | 1, 2 | cres 4662 | . 2 class (𝐴 ↾ 𝐵) |
4 | cvv 2760 | . . . 4 class V | |
5 | 2, 4 | cxp 4658 | . . 3 class (𝐵 × V) |
6 | 1, 5 | cin 3153 | . 2 class (𝐴 ∩ (𝐵 × V)) |
7 | 3, 6 | wceq 1364 | 1 wff (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) |
Colors of variables: wff set class |
This definition is referenced by: reseq1 4937 reseq2 4938 nfres 4945 csbresg 4946 res0 4947 opelres 4948 resres 4955 resundi 4956 resundir 4957 resindi 4958 resindir 4959 inres 4960 resdifcom 4961 resiun1 4962 resiun2 4963 resss 4967 ssres 4969 ssres2 4970 relres 4971 xpssres 4978 resopab 4987 ssrnres 5109 imainrect 5112 xpima1 5113 xpima2m 5114 cnvcnv2 5120 resdmres 5158 nfvres 5589 ressnop0 5740 |
Copyright terms: Public domain | W3C validator |