Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-res | GIF version |
Description: Define the restriction of a class. Definition 6.6(1) of [TakeutiZaring] p. 24. For example, (𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → (𝐹 ↾ 𝐵) = {〈2, 6〉}. We do not introduce a special syntax for the corestriction of a class: it will be expressed either as the intersection (𝐴 ∩ (V × 𝐵)) or as the converse of the restricted converse. (Contributed by NM, 2-Aug-1994.) |
Ref | Expression |
---|---|
df-res | ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | 1, 2 | cres 4622 | . 2 class (𝐴 ↾ 𝐵) |
4 | cvv 2735 | . . . 4 class V | |
5 | 2, 4 | cxp 4618 | . . 3 class (𝐵 × V) |
6 | 1, 5 | cin 3126 | . 2 class (𝐴 ∩ (𝐵 × V)) |
7 | 3, 6 | wceq 1353 | 1 wff (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) |
Colors of variables: wff set class |
This definition is referenced by: reseq1 4894 reseq2 4895 nfres 4902 csbresg 4903 res0 4904 opelres 4905 resres 4912 resundi 4913 resundir 4914 resindi 4915 resindir 4916 inres 4917 resdifcom 4918 resiun1 4919 resiun2 4920 resss 4924 ssres 4926 ssres2 4927 relres 4928 xpssres 4935 resopab 4944 ssrnres 5063 imainrect 5066 xpima1 5067 xpima2m 5068 cnvcnv2 5074 resdmres 5112 nfvres 5540 ressnop0 5689 |
Copyright terms: Public domain | W3C validator |