| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > df-res | GIF version | ||
| Description: Define the restriction of a class. Definition 6.6(1) of [TakeutiZaring] p. 24. For example, (𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → (𝐹 ↾ 𝐵) = {〈2, 6〉}. We do not introduce a special syntax for the corestriction of a class: it will be expressed either as the intersection (𝐴 ∩ (V × 𝐵)) or as the converse of the restricted converse. (Contributed by NM, 2-Aug-1994.) | 
| Ref | Expression | 
|---|---|
| df-res | ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | 1, 2 | cres 4665 | . 2 class (𝐴 ↾ 𝐵) | 
| 4 | cvv 2763 | . . . 4 class V | |
| 5 | 2, 4 | cxp 4661 | . . 3 class (𝐵 × V) | 
| 6 | 1, 5 | cin 3156 | . 2 class (𝐴 ∩ (𝐵 × V)) | 
| 7 | 3, 6 | wceq 1364 | 1 wff (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) | 
| Colors of variables: wff set class | 
| This definition is referenced by: reseq1 4940 reseq2 4941 nfres 4948 csbresg 4949 res0 4950 opelres 4951 resres 4958 resundi 4959 resundir 4960 resindi 4961 resindir 4962 inres 4963 resdifcom 4964 resiun1 4965 resiun2 4966 resss 4970 ssres 4972 ssres2 4973 relres 4974 xpssres 4981 resopab 4990 ssrnres 5112 imainrect 5115 xpima1 5116 xpima2m 5117 cnvcnv2 5123 resdmres 5161 nfvres 5592 ressnop0 5743 | 
| Copyright terms: Public domain | W3C validator |