| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-res | GIF version | ||
| Description: Define the restriction of a class. Definition 6.6(1) of [TakeutiZaring] p. 24. For example, (𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → (𝐹 ↾ 𝐵) = {〈2, 6〉}. We do not introduce a special syntax for the corestriction of a class: it will be expressed either as the intersection (𝐴 ∩ (V × 𝐵)) or as the converse of the restricted converse. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| df-res | ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | 1, 2 | cres 4681 | . 2 class (𝐴 ↾ 𝐵) |
| 4 | cvv 2773 | . . . 4 class V | |
| 5 | 2, 4 | cxp 4677 | . . 3 class (𝐵 × V) |
| 6 | 1, 5 | cin 3166 | . 2 class (𝐴 ∩ (𝐵 × V)) |
| 7 | 3, 6 | wceq 1373 | 1 wff (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) |
| Colors of variables: wff set class |
| This definition is referenced by: reseq1 4958 reseq2 4959 nfres 4966 csbresg 4967 res0 4968 opelres 4969 resres 4976 resundi 4977 resundir 4978 resindi 4979 resindir 4980 inres 4981 resdifcom 4982 resiun1 4983 resiun2 4984 resss 4988 ssres 4990 ssres2 4991 relres 4992 xpssres 4999 resopab 5008 ssrnres 5130 imainrect 5133 xpima1 5134 xpima2m 5135 cnvcnv2 5141 resdmres 5179 nfvres 5617 ressnop0 5772 |
| Copyright terms: Public domain | W3C validator |