ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imasival GIF version

Theorem imasival 12892
Description: Value of an image structure. The is a lemma for the theorems imasbas 12893, imasplusg 12894, and imasmulr 12895 and should not be needed once they are proved. (Contributed by Mario Carneiro, 23-Feb-2015.) (Revised by Jim Kingdon, 11-Mar-2025.) (New usage is discouraged.)
Hypotheses
Ref Expression
imasval.u (𝜑𝑈 = (𝐹s 𝑅))
imasval.v (𝜑𝑉 = (Base‘𝑅))
imasval.p + = (+g𝑅)
imasval.m × = (.r𝑅)
imasval.q · = ( ·𝑠𝑅)
imasval.a (𝜑 = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩})
imasval.t (𝜑 = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩})
imasval.f (𝜑𝐹:𝑉onto𝐵)
imasval.r (𝜑𝑅𝑍)
Assertion
Ref Expression
imasival (𝜑𝑈 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), ⟩})
Distinct variable groups:   𝐹,𝑝,𝑞   𝑅,𝑝,𝑞   𝑉,𝑝,𝑞   𝜑,𝑝,𝑞
Allowed substitution hints:   𝐵(𝑞,𝑝)   + (𝑞,𝑝)   (𝑞,𝑝)   (𝑞,𝑝)   · (𝑞,𝑝)   × (𝑞,𝑝)   𝑈(𝑞,𝑝)   𝑍(𝑞,𝑝)

Proof of Theorem imasival
Dummy variables 𝑓 𝑟 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasval.u . 2 (𝜑𝑈 = (𝐹s 𝑅))
2 df-iimas 12888 . . . 4 s = (𝑓 ∈ V, 𝑟 ∈ V ↦ (Base‘𝑟) / 𝑣{⟨(Base‘ndx), ran 𝑓⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩}⟩})
32a1i 9 . . 3 (𝜑 → “s = (𝑓 ∈ V, 𝑟 ∈ V ↦ (Base‘𝑟) / 𝑣{⟨(Base‘ndx), ran 𝑓⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩}⟩}))
4 basfn 12679 . . . . . 6 Base Fn V
5 vex 2763 . . . . . 6 𝑟 ∈ V
6 funfvex 5572 . . . . . . 7 ((Fun Base ∧ 𝑟 ∈ dom Base) → (Base‘𝑟) ∈ V)
76funfni 5355 . . . . . 6 ((Base Fn V ∧ 𝑟 ∈ V) → (Base‘𝑟) ∈ V)
84, 5, 7mp2an 426 . . . . 5 (Base‘𝑟) ∈ V
98a1i 9 . . . 4 ((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) → (Base‘𝑟) ∈ V)
10 simplrl 535 . . . . . . . 8 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 𝑓 = 𝐹)
1110rneqd 4892 . . . . . . 7 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ran 𝑓 = ran 𝐹)
12 imasval.f . . . . . . . . 9 (𝜑𝐹:𝑉onto𝐵)
13 forn 5480 . . . . . . . . 9 (𝐹:𝑉onto𝐵 → ran 𝐹 = 𝐵)
1412, 13syl 14 . . . . . . . 8 (𝜑 → ran 𝐹 = 𝐵)
1514ad2antrr 488 . . . . . . 7 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ran 𝐹 = 𝐵)
1611, 15eqtrd 2226 . . . . . 6 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ran 𝑓 = 𝐵)
1716opeq2d 3812 . . . . 5 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ⟨(Base‘ndx), ran 𝑓⟩ = ⟨(Base‘ndx), 𝐵⟩)
18 simplrr 536 . . . . . . . . . 10 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 𝑟 = 𝑅)
1918fveq2d 5559 . . . . . . . . 9 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (Base‘𝑟) = (Base‘𝑅))
20 simpr 110 . . . . . . . . 9 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 𝑣 = (Base‘𝑟))
21 imasval.v . . . . . . . . . 10 (𝜑𝑉 = (Base‘𝑅))
2221ad2antrr 488 . . . . . . . . 9 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 𝑉 = (Base‘𝑅))
2319, 20, 223eqtr4d 2236 . . . . . . . 8 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 𝑣 = 𝑉)
2410fveq1d 5557 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (𝑓𝑝) = (𝐹𝑝))
2510fveq1d 5557 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (𝑓𝑞) = (𝐹𝑞))
2624, 25opeq12d 3813 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ⟨(𝑓𝑝), (𝑓𝑞)⟩ = ⟨(𝐹𝑝), (𝐹𝑞)⟩)
2718fveq2d 5559 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (+g𝑟) = (+g𝑅))
28 imasval.p . . . . . . . . . . . . . 14 + = (+g𝑅)
2927, 28eqtr4di 2244 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (+g𝑟) = + )
3029oveqd 5936 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (𝑝(+g𝑟)𝑞) = (𝑝 + 𝑞))
3110, 30fveq12d 5562 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (𝑓‘(𝑝(+g𝑟)𝑞)) = (𝐹‘(𝑝 + 𝑞)))
3226, 31opeq12d 3813 . . . . . . . . . 10 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩ = ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩)
3332sneqd 3632 . . . . . . . . 9 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩} = {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩})
3423, 33iuneq12d 3937 . . . . . . . 8 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩} = 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩})
3523, 34iuneq12d 3937 . . . . . . 7 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩} = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩})
36 imasval.a . . . . . . . 8 (𝜑 = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩})
3736ad2antrr 488 . . . . . . 7 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩})
3835, 37eqtr4d 2229 . . . . . 6 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩} = )
3938opeq2d 3812 . . . . 5 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩}⟩ = ⟨(+g‘ndx), ⟩)
4018fveq2d 5559 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (.r𝑟) = (.r𝑅))
41 imasval.m . . . . . . . . . . . . . 14 × = (.r𝑅)
4240, 41eqtr4di 2244 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (.r𝑟) = × )
4342oveqd 5936 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (𝑝(.r𝑟)𝑞) = (𝑝 × 𝑞))
4410, 43fveq12d 5562 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (𝑓‘(𝑝(.r𝑟)𝑞)) = (𝐹‘(𝑝 × 𝑞)))
4526, 44opeq12d 3813 . . . . . . . . . 10 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩ = ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩)
4645sneqd 3632 . . . . . . . . 9 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩} = {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩})
4723, 46iuneq12d 3937 . . . . . . . 8 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩} = 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩})
4823, 47iuneq12d 3937 . . . . . . 7 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩} = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩})
49 imasval.t . . . . . . . 8 (𝜑 = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩})
5049ad2antrr 488 . . . . . . 7 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩})
5148, 50eqtr4d 2229 . . . . . 6 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩} = )
5251opeq2d 3812 . . . . 5 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩}⟩ = ⟨(.r‘ndx), ⟩)
5317, 39, 52tpeq123d 3711 . . . 4 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → {⟨(Base‘ndx), ran 𝑓⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩}⟩} = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), ⟩})
549, 53csbied 3128 . . 3 ((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) → (Base‘𝑟) / 𝑣{⟨(Base‘ndx), ran 𝑓⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩}⟩} = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), ⟩})
55 fof 5477 . . . . 5 (𝐹:𝑉onto𝐵𝐹:𝑉𝐵)
5612, 55syl 14 . . . 4 (𝜑𝐹:𝑉𝐵)
57 imasval.r . . . . . . 7 (𝜑𝑅𝑍)
5857elexd 2773 . . . . . 6 (𝜑𝑅 ∈ V)
59 funfvex 5572 . . . . . . 7 ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V)
6059funfni 5355 . . . . . 6 ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V)
614, 58, 60sylancr 414 . . . . 5 (𝜑 → (Base‘𝑅) ∈ V)
6221, 61eqeltrd 2270 . . . 4 (𝜑𝑉 ∈ V)
6356, 62fexd 5789 . . 3 (𝜑𝐹 ∈ V)
64 basendxnn 12677 . . . . 5 (Base‘ndx) ∈ ℕ
65 focdmex 6169 . . . . . 6 (𝑉 ∈ V → (𝐹:𝑉onto𝐵𝐵 ∈ V))
6662, 12, 65sylc 62 . . . . 5 (𝜑𝐵 ∈ V)
67 opexg 4258 . . . . 5 (((Base‘ndx) ∈ ℕ ∧ 𝐵 ∈ V) → ⟨(Base‘ndx), 𝐵⟩ ∈ V)
6864, 66, 67sylancr 414 . . . 4 (𝜑 → ⟨(Base‘ndx), 𝐵⟩ ∈ V)
69 plusgndxnn 12732 . . . . 5 (+g‘ndx) ∈ ℕ
7063ad2antrr 488 . . . . . . . . . . . . . 14 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → 𝐹 ∈ V)
71 vex 2763 . . . . . . . . . . . . . . 15 𝑝 ∈ V
7271a1i 9 . . . . . . . . . . . . . 14 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → 𝑝 ∈ V)
73 fvexg 5574 . . . . . . . . . . . . . 14 ((𝐹 ∈ V ∧ 𝑝 ∈ V) → (𝐹𝑝) ∈ V)
7470, 72, 73syl2anc 411 . . . . . . . . . . . . 13 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → (𝐹𝑝) ∈ V)
75 vex 2763 . . . . . . . . . . . . . . 15 𝑞 ∈ V
7675a1i 9 . . . . . . . . . . . . . 14 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → 𝑞 ∈ V)
77 fvexg 5574 . . . . . . . . . . . . . 14 ((𝐹 ∈ V ∧ 𝑞 ∈ V) → (𝐹𝑞) ∈ V)
7870, 76, 77syl2anc 411 . . . . . . . . . . . . 13 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → (𝐹𝑞) ∈ V)
79 opexg 4258 . . . . . . . . . . . . 13 (((𝐹𝑝) ∈ V ∧ (𝐹𝑞) ∈ V) → ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ V)
8074, 78, 79syl2anc 411 . . . . . . . . . . . 12 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ V)
81 plusgslid 12733 . . . . . . . . . . . . . . . . . 18 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
8281slotex 12648 . . . . . . . . . . . . . . . . 17 (𝑅𝑍 → (+g𝑅) ∈ V)
8357, 82syl 14 . . . . . . . . . . . . . . . 16 (𝜑 → (+g𝑅) ∈ V)
8428, 83eqeltrid 2280 . . . . . . . . . . . . . . 15 (𝜑+ ∈ V)
8584ad2antrr 488 . . . . . . . . . . . . . 14 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → + ∈ V)
86 ovexg 5953 . . . . . . . . . . . . . 14 ((𝑝 ∈ V ∧ + ∈ V ∧ 𝑞 ∈ V) → (𝑝 + 𝑞) ∈ V)
8772, 85, 76, 86syl3anc 1249 . . . . . . . . . . . . 13 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → (𝑝 + 𝑞) ∈ V)
88 fvexg 5574 . . . . . . . . . . . . 13 ((𝐹 ∈ V ∧ (𝑝 + 𝑞) ∈ V) → (𝐹‘(𝑝 + 𝑞)) ∈ V)
8970, 87, 88syl2anc 411 . . . . . . . . . . . 12 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → (𝐹‘(𝑝 + 𝑞)) ∈ V)
90 opexg 4258 . . . . . . . . . . . 12 ((⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ V ∧ (𝐹‘(𝑝 + 𝑞)) ∈ V) → ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩ ∈ V)
9180, 89, 90syl2anc 411 . . . . . . . . . . 11 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩ ∈ V)
92 snexg 4214 . . . . . . . . . . 11 (⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩ ∈ V → {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩} ∈ V)
9391, 92syl 14 . . . . . . . . . 10 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩} ∈ V)
9493ralrimiva 2567 . . . . . . . . 9 ((𝜑𝑝𝑉) → ∀𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩} ∈ V)
95 iunexg 6173 . . . . . . . . 9 ((𝑉 ∈ V ∧ ∀𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩} ∈ V) → 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩} ∈ V)
9662, 94, 95syl2an2r 595 . . . . . . . 8 ((𝜑𝑝𝑉) → 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩} ∈ V)
9796ralrimiva 2567 . . . . . . 7 (𝜑 → ∀𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩} ∈ V)
98 iunexg 6173 . . . . . . 7 ((𝑉 ∈ V ∧ ∀𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩} ∈ V) → 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩} ∈ V)
9962, 97, 98syl2anc 411 . . . . . 6 (𝜑 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩} ∈ V)
10036, 99eqeltrd 2270 . . . . 5 (𝜑 ∈ V)
101 opexg 4258 . . . . 5 (((+g‘ndx) ∈ ℕ ∧ ∈ V) → ⟨(+g‘ndx), ⟩ ∈ V)
10269, 100, 101sylancr 414 . . . 4 (𝜑 → ⟨(+g‘ndx), ⟩ ∈ V)
103 mulrslid 12752 . . . . . 6 (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ)
104103simpri 113 . . . . 5 (.r‘ndx) ∈ ℕ
105103slotex 12648 . . . . . . . . . . . . . . . . 17 (𝑅𝑍 → (.r𝑅) ∈ V)
10657, 105syl 14 . . . . . . . . . . . . . . . 16 (𝜑 → (.r𝑅) ∈ V)
10741, 106eqeltrid 2280 . . . . . . . . . . . . . . 15 (𝜑× ∈ V)
108107ad2antrr 488 . . . . . . . . . . . . . 14 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → × ∈ V)
109 ovexg 5953 . . . . . . . . . . . . . 14 ((𝑝 ∈ V ∧ × ∈ V ∧ 𝑞 ∈ V) → (𝑝 × 𝑞) ∈ V)
11072, 108, 76, 109syl3anc 1249 . . . . . . . . . . . . 13 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → (𝑝 × 𝑞) ∈ V)
111 fvexg 5574 . . . . . . . . . . . . 13 ((𝐹 ∈ V ∧ (𝑝 × 𝑞) ∈ V) → (𝐹‘(𝑝 × 𝑞)) ∈ V)
11270, 110, 111syl2anc 411 . . . . . . . . . . . 12 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → (𝐹‘(𝑝 × 𝑞)) ∈ V)
113 opexg 4258 . . . . . . . . . . . 12 ((⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ V ∧ (𝐹‘(𝑝 × 𝑞)) ∈ V) → ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩ ∈ V)
11480, 112, 113syl2anc 411 . . . . . . . . . . 11 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩ ∈ V)
115 snexg 4214 . . . . . . . . . . 11 (⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩ ∈ V → {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩} ∈ V)
116114, 115syl 14 . . . . . . . . . 10 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩} ∈ V)
117116ralrimiva 2567 . . . . . . . . 9 ((𝜑𝑝𝑉) → ∀𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩} ∈ V)
118 iunexg 6173 . . . . . . . . 9 ((𝑉 ∈ V ∧ ∀𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩} ∈ V) → 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩} ∈ V)
11962, 117, 118syl2an2r 595 . . . . . . . 8 ((𝜑𝑝𝑉) → 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩} ∈ V)
120119ralrimiva 2567 . . . . . . 7 (𝜑 → ∀𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩} ∈ V)
121 iunexg 6173 . . . . . . 7 ((𝑉 ∈ V ∧ ∀𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩} ∈ V) → 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩} ∈ V)
12262, 120, 121syl2anc 411 . . . . . 6 (𝜑 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩} ∈ V)
12349, 122eqeltrd 2270 . . . . 5 (𝜑 ∈ V)
124 opexg 4258 . . . . 5 (((.r‘ndx) ∈ ℕ ∧ ∈ V) → ⟨(.r‘ndx), ⟩ ∈ V)
125104, 123, 124sylancr 414 . . . 4 (𝜑 → ⟨(.r‘ndx), ⟩ ∈ V)
126 tpexg 4476 . . . 4 ((⟨(Base‘ndx), 𝐵⟩ ∈ V ∧ ⟨(+g‘ndx), ⟩ ∈ V ∧ ⟨(.r‘ndx), ⟩ ∈ V) → {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), ⟩} ∈ V)
12768, 102, 125, 126syl3anc 1249 . . 3 (𝜑 → {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), ⟩} ∈ V)
1283, 54, 63, 58, 127ovmpod 6047 . 2 (𝜑 → (𝐹s 𝑅) = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), ⟩})
1291, 128eqtrd 2226 1 (𝜑𝑈 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), ⟩})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  wral 2472  Vcvv 2760  csb 3081  {csn 3619  {ctp 3621  cop 3622   ciun 3913  ran crn 4661   Fn wfn 5250  wf 5251  ontowfo 5253  cfv 5255  (class class class)co 5919  cmpo 5921  cn 8984  ndxcnx 12618  Slot cslot 12620  Basecbs 12621  +gcplusg 12698  .rcmulr 12699   ·𝑠 cvsca 12702  s cimas 12885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-tp 3627  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-inn 8985  df-2 9043  df-3 9044  df-ndx 12624  df-slot 12625  df-base 12627  df-plusg 12711  df-mulr 12712  df-iimas 12888
This theorem is referenced by:  imasbas  12893  imasplusg  12894  imasmulr  12895
  Copyright terms: Public domain W3C validator