| Step | Hyp | Ref
| Expression |
| 1 | | imasval.u |
. 2
⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) |
| 2 | | df-iimas 12945 |
. . . 4
⊢
“s = (𝑓 ∈ V, 𝑟 ∈ V ↦
⦋(Base‘𝑟) / 𝑣⦌{〈(Base‘ndx), ran
𝑓〉,
〈(+g‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉}〉,
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉}〉}) |
| 3 | 2 | a1i 9 |
. . 3
⊢ (𝜑 → “s
= (𝑓 ∈ V, 𝑟 ∈ V ↦
⦋(Base‘𝑟) / 𝑣⦌{〈(Base‘ndx), ran
𝑓〉,
〈(+g‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉}〉,
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉}〉})) |
| 4 | | basfn 12736 |
. . . . . 6
⊢ Base Fn
V |
| 5 | | vex 2766 |
. . . . . 6
⊢ 𝑟 ∈ V |
| 6 | | funfvex 5575 |
. . . . . . 7
⊢ ((Fun
Base ∧ 𝑟 ∈ dom
Base) → (Base‘𝑟)
∈ V) |
| 7 | 6 | funfni 5358 |
. . . . . 6
⊢ ((Base Fn
V ∧ 𝑟 ∈ V) →
(Base‘𝑟) ∈
V) |
| 8 | 4, 5, 7 | mp2an 426 |
. . . . 5
⊢
(Base‘𝑟)
∈ V |
| 9 | 8 | a1i 9 |
. . . 4
⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) → (Base‘𝑟) ∈ V) |
| 10 | | simplrl 535 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 𝑓 = 𝐹) |
| 11 | 10 | rneqd 4895 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ran 𝑓 = ran 𝐹) |
| 12 | | imasval.f |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) |
| 13 | | forn 5483 |
. . . . . . . . 9
⊢ (𝐹:𝑉–onto→𝐵 → ran 𝐹 = 𝐵) |
| 14 | 12, 13 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → ran 𝐹 = 𝐵) |
| 15 | 14 | ad2antrr 488 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ran 𝐹 = 𝐵) |
| 16 | 11, 15 | eqtrd 2229 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ran 𝑓 = 𝐵) |
| 17 | 16 | opeq2d 3815 |
. . . . 5
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 〈(Base‘ndx), ran 𝑓〉 = 〈(Base‘ndx),
𝐵〉) |
| 18 | | simplrr 536 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 𝑟 = 𝑅) |
| 19 | 18 | fveq2d 5562 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (Base‘𝑟) = (Base‘𝑅)) |
| 20 | | simpr 110 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 𝑣 = (Base‘𝑟)) |
| 21 | | imasval.v |
. . . . . . . . . 10
⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
| 22 | 21 | ad2antrr 488 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 𝑉 = (Base‘𝑅)) |
| 23 | 19, 20, 22 | 3eqtr4d 2239 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 𝑣 = 𝑉) |
| 24 | 10 | fveq1d 5560 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (𝑓‘𝑝) = (𝐹‘𝑝)) |
| 25 | 10 | fveq1d 5560 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (𝑓‘𝑞) = (𝐹‘𝑞)) |
| 26 | 24, 25 | opeq12d 3816 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 〈(𝑓‘𝑝), (𝑓‘𝑞)〉 = 〈(𝐹‘𝑝), (𝐹‘𝑞)〉) |
| 27 | 18 | fveq2d 5562 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (+g‘𝑟) = (+g‘𝑅)) |
| 28 | | imasval.p |
. . . . . . . . . . . . . 14
⊢ + =
(+g‘𝑅) |
| 29 | 27, 28 | eqtr4di 2247 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (+g‘𝑟) = + ) |
| 30 | 29 | oveqd 5939 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (𝑝(+g‘𝑟)𝑞) = (𝑝 + 𝑞)) |
| 31 | 10, 30 | fveq12d 5565 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (𝑓‘(𝑝(+g‘𝑟)𝑞)) = (𝐹‘(𝑝 + 𝑞))) |
| 32 | 26, 31 | opeq12d 3816 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉 = 〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 + 𝑞))〉) |
| 33 | 32 | sneqd 3635 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉} = {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 + 𝑞))〉}) |
| 34 | 23, 33 | iuneq12d 3940 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ∪
𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉} = ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 + 𝑞))〉}) |
| 35 | 23, 34 | iuneq12d 3940 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ∪
𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉} = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 + 𝑞))〉}) |
| 36 | | imasval.a |
. . . . . . . 8
⊢ (𝜑 → ✚ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 + 𝑞))〉}) |
| 37 | 36 | ad2antrr 488 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ✚ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 + 𝑞))〉}) |
| 38 | 35, 37 | eqtr4d 2232 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ∪
𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉} = ✚ ) |
| 39 | 38 | opeq2d 3815 |
. . . . 5
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 〈(+g‘ndx),
∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉}〉 =
〈(+g‘ndx), ✚
〉) |
| 40 | 18 | fveq2d 5562 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (.r‘𝑟) = (.r‘𝑅)) |
| 41 | | imasval.m |
. . . . . . . . . . . . . 14
⊢ × =
(.r‘𝑅) |
| 42 | 40, 41 | eqtr4di 2247 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (.r‘𝑟) = × ) |
| 43 | 42 | oveqd 5939 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (𝑝(.r‘𝑟)𝑞) = (𝑝 × 𝑞)) |
| 44 | 10, 43 | fveq12d 5565 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (𝑓‘(𝑝(.r‘𝑟)𝑞)) = (𝐹‘(𝑝 × 𝑞))) |
| 45 | 26, 44 | opeq12d 3816 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉 = 〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 × 𝑞))〉) |
| 46 | 45 | sneqd 3635 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉} = {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 × 𝑞))〉}) |
| 47 | 23, 46 | iuneq12d 3940 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ∪
𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉} = ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 × 𝑞))〉}) |
| 48 | 23, 47 | iuneq12d 3940 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ∪
𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉} = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 × 𝑞))〉}) |
| 49 | | imasval.t |
. . . . . . . 8
⊢ (𝜑 → ∙ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 × 𝑞))〉}) |
| 50 | 49 | ad2antrr 488 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ∙ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 × 𝑞))〉}) |
| 51 | 48, 50 | eqtr4d 2232 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ∪
𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉} = ∙ ) |
| 52 | 51 | opeq2d 3815 |
. . . . 5
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 〈(.r‘ndx),
∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉}〉 =
〈(.r‘ndx), ∙
〉) |
| 53 | 17, 39, 52 | tpeq123d 3714 |
. . . 4
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → {〈(Base‘ndx), ran 𝑓〉,
〈(+g‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉}〉,
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉}〉} = {〈(Base‘ndx),
𝐵〉,
〈(+g‘ndx), ✚ 〉,
〈(.r‘ndx), ∙
〉}) |
| 54 | 9, 53 | csbied 3131 |
. . 3
⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) → ⦋(Base‘𝑟) / 𝑣⦌{〈(Base‘ndx), ran
𝑓〉,
〈(+g‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉}〉,
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉}〉} = {〈(Base‘ndx),
𝐵〉,
〈(+g‘ndx), ✚ 〉,
〈(.r‘ndx), ∙
〉}) |
| 55 | | fof 5480 |
. . . . 5
⊢ (𝐹:𝑉–onto→𝐵 → 𝐹:𝑉⟶𝐵) |
| 56 | 12, 55 | syl 14 |
. . . 4
⊢ (𝜑 → 𝐹:𝑉⟶𝐵) |
| 57 | | imasval.r |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ 𝑍) |
| 58 | 57 | elexd 2776 |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ V) |
| 59 | | funfvex 5575 |
. . . . . . 7
⊢ ((Fun
Base ∧ 𝑅 ∈ dom
Base) → (Base‘𝑅)
∈ V) |
| 60 | 59 | funfni 5358 |
. . . . . 6
⊢ ((Base Fn
V ∧ 𝑅 ∈ V) →
(Base‘𝑅) ∈
V) |
| 61 | 4, 58, 60 | sylancr 414 |
. . . . 5
⊢ (𝜑 → (Base‘𝑅) ∈ V) |
| 62 | 21, 61 | eqeltrd 2273 |
. . . 4
⊢ (𝜑 → 𝑉 ∈ V) |
| 63 | 56, 62 | fexd 5792 |
. . 3
⊢ (𝜑 → 𝐹 ∈ V) |
| 64 | | basendxnn 12734 |
. . . . 5
⊢
(Base‘ndx) ∈ ℕ |
| 65 | | focdmex 6172 |
. . . . . 6
⊢ (𝑉 ∈ V → (𝐹:𝑉–onto→𝐵 → 𝐵 ∈ V)) |
| 66 | 62, 12, 65 | sylc 62 |
. . . . 5
⊢ (𝜑 → 𝐵 ∈ V) |
| 67 | | opexg 4261 |
. . . . 5
⊢
(((Base‘ndx) ∈ ℕ ∧ 𝐵 ∈ V) → 〈(Base‘ndx),
𝐵〉 ∈
V) |
| 68 | 64, 66, 67 | sylancr 414 |
. . . 4
⊢ (𝜑 → 〈(Base‘ndx),
𝐵〉 ∈
V) |
| 69 | | plusgndxnn 12789 |
. . . . 5
⊢
(+g‘ndx) ∈ ℕ |
| 70 | 63 | ad2antrr 488 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑝 ∈ 𝑉) ∧ 𝑞 ∈ 𝑉) → 𝐹 ∈ V) |
| 71 | | vex 2766 |
. . . . . . . . . . . . . . 15
⊢ 𝑝 ∈ V |
| 72 | 71 | a1i 9 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑝 ∈ 𝑉) ∧ 𝑞 ∈ 𝑉) → 𝑝 ∈ V) |
| 73 | | fvexg 5577 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 ∈ V ∧ 𝑝 ∈ V) → (𝐹‘𝑝) ∈ V) |
| 74 | 70, 72, 73 | syl2anc 411 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑝 ∈ 𝑉) ∧ 𝑞 ∈ 𝑉) → (𝐹‘𝑝) ∈ V) |
| 75 | | vex 2766 |
. . . . . . . . . . . . . . 15
⊢ 𝑞 ∈ V |
| 76 | 75 | a1i 9 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑝 ∈ 𝑉) ∧ 𝑞 ∈ 𝑉) → 𝑞 ∈ V) |
| 77 | | fvexg 5577 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 ∈ V ∧ 𝑞 ∈ V) → (𝐹‘𝑞) ∈ V) |
| 78 | 70, 76, 77 | syl2anc 411 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑝 ∈ 𝑉) ∧ 𝑞 ∈ 𝑉) → (𝐹‘𝑞) ∈ V) |
| 79 | | opexg 4261 |
. . . . . . . . . . . . 13
⊢ (((𝐹‘𝑝) ∈ V ∧ (𝐹‘𝑞) ∈ V) → 〈(𝐹‘𝑝), (𝐹‘𝑞)〉 ∈ V) |
| 80 | 74, 78, 79 | syl2anc 411 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑝 ∈ 𝑉) ∧ 𝑞 ∈ 𝑉) → 〈(𝐹‘𝑝), (𝐹‘𝑞)〉 ∈ V) |
| 81 | | plusgslid 12790 |
. . . . . . . . . . . . . . . . . 18
⊢
(+g = Slot (+g‘ndx) ∧
(+g‘ndx) ∈ ℕ) |
| 82 | 81 | slotex 12705 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑅 ∈ 𝑍 → (+g‘𝑅) ∈ V) |
| 83 | 57, 82 | syl 14 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (+g‘𝑅) ∈ V) |
| 84 | 28, 83 | eqeltrid 2283 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → + ∈ V) |
| 85 | 84 | ad2antrr 488 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑝 ∈ 𝑉) ∧ 𝑞 ∈ 𝑉) → + ∈ V) |
| 86 | | ovexg 5956 |
. . . . . . . . . . . . . 14
⊢ ((𝑝 ∈ V ∧ + ∈ V
∧ 𝑞 ∈ V) →
(𝑝 + 𝑞) ∈ V) |
| 87 | 72, 85, 76, 86 | syl3anc 1249 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑝 ∈ 𝑉) ∧ 𝑞 ∈ 𝑉) → (𝑝 + 𝑞) ∈ V) |
| 88 | | fvexg 5577 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ∈ V ∧ (𝑝 + 𝑞) ∈ V) → (𝐹‘(𝑝 + 𝑞)) ∈ V) |
| 89 | 70, 87, 88 | syl2anc 411 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑝 ∈ 𝑉) ∧ 𝑞 ∈ 𝑉) → (𝐹‘(𝑝 + 𝑞)) ∈ V) |
| 90 | | opexg 4261 |
. . . . . . . . . . . 12
⊢
((〈(𝐹‘𝑝), (𝐹‘𝑞)〉 ∈ V ∧ (𝐹‘(𝑝 + 𝑞)) ∈ V) → 〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 + 𝑞))〉 ∈ V) |
| 91 | 80, 89, 90 | syl2anc 411 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑝 ∈ 𝑉) ∧ 𝑞 ∈ 𝑉) → 〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 + 𝑞))〉 ∈ V) |
| 92 | | snexg 4217 |
. . . . . . . . . . 11
⊢
(〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 + 𝑞))〉 ∈ V → {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 + 𝑞))〉} ∈ V) |
| 93 | 91, 92 | syl 14 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑝 ∈ 𝑉) ∧ 𝑞 ∈ 𝑉) → {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 + 𝑞))〉} ∈ V) |
| 94 | 93 | ralrimiva 2570 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑉) → ∀𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 + 𝑞))〉} ∈ V) |
| 95 | | iunexg 6176 |
. . . . . . . . 9
⊢ ((𝑉 ∈ V ∧ ∀𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 + 𝑞))〉} ∈ V) → ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 + 𝑞))〉} ∈ V) |
| 96 | 62, 94, 95 | syl2an2r 595 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑉) → ∪
𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 + 𝑞))〉} ∈ V) |
| 97 | 96 | ralrimiva 2570 |
. . . . . . 7
⊢ (𝜑 → ∀𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 + 𝑞))〉} ∈ V) |
| 98 | | iunexg 6176 |
. . . . . . 7
⊢ ((𝑉 ∈ V ∧ ∀𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 + 𝑞))〉} ∈ V) → ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 + 𝑞))〉} ∈ V) |
| 99 | 62, 97, 98 | syl2anc 411 |
. . . . . 6
⊢ (𝜑 → ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 + 𝑞))〉} ∈ V) |
| 100 | 36, 99 | eqeltrd 2273 |
. . . . 5
⊢ (𝜑 → ✚ ∈
V) |
| 101 | | opexg 4261 |
. . . . 5
⊢
(((+g‘ndx) ∈ ℕ ∧ ✚ ∈ V) →
〈(+g‘ndx), ✚ 〉 ∈
V) |
| 102 | 69, 100, 101 | sylancr 414 |
. . . 4
⊢ (𝜑 →
〈(+g‘ndx), ✚ 〉 ∈
V) |
| 103 | | mulrslid 12809 |
. . . . . 6
⊢
(.r = Slot (.r‘ndx) ∧
(.r‘ndx) ∈ ℕ) |
| 104 | 103 | simpri 113 |
. . . . 5
⊢
(.r‘ndx) ∈ ℕ |
| 105 | 103 | slotex 12705 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑅 ∈ 𝑍 → (.r‘𝑅) ∈ V) |
| 106 | 57, 105 | syl 14 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (.r‘𝑅) ∈ V) |
| 107 | 41, 106 | eqeltrid 2283 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → × ∈
V) |
| 108 | 107 | ad2antrr 488 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑝 ∈ 𝑉) ∧ 𝑞 ∈ 𝑉) → × ∈
V) |
| 109 | | ovexg 5956 |
. . . . . . . . . . . . . 14
⊢ ((𝑝 ∈ V ∧ × ∈
V ∧ 𝑞 ∈ V) →
(𝑝 × 𝑞) ∈ V) |
| 110 | 72, 108, 76, 109 | syl3anc 1249 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑝 ∈ 𝑉) ∧ 𝑞 ∈ 𝑉) → (𝑝 × 𝑞) ∈ V) |
| 111 | | fvexg 5577 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ∈ V ∧ (𝑝 × 𝑞) ∈ V) → (𝐹‘(𝑝 × 𝑞)) ∈ V) |
| 112 | 70, 110, 111 | syl2anc 411 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑝 ∈ 𝑉) ∧ 𝑞 ∈ 𝑉) → (𝐹‘(𝑝 × 𝑞)) ∈ V) |
| 113 | | opexg 4261 |
. . . . . . . . . . . 12
⊢
((〈(𝐹‘𝑝), (𝐹‘𝑞)〉 ∈ V ∧ (𝐹‘(𝑝 × 𝑞)) ∈ V) → 〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 × 𝑞))〉 ∈ V) |
| 114 | 80, 112, 113 | syl2anc 411 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑝 ∈ 𝑉) ∧ 𝑞 ∈ 𝑉) → 〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 × 𝑞))〉 ∈ V) |
| 115 | | snexg 4217 |
. . . . . . . . . . 11
⊢
(〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 × 𝑞))〉 ∈ V → {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 × 𝑞))〉} ∈ V) |
| 116 | 114, 115 | syl 14 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑝 ∈ 𝑉) ∧ 𝑞 ∈ 𝑉) → {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 × 𝑞))〉} ∈ V) |
| 117 | 116 | ralrimiva 2570 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑉) → ∀𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 × 𝑞))〉} ∈ V) |
| 118 | | iunexg 6176 |
. . . . . . . . 9
⊢ ((𝑉 ∈ V ∧ ∀𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 × 𝑞))〉} ∈ V) → ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 × 𝑞))〉} ∈ V) |
| 119 | 62, 117, 118 | syl2an2r 595 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑉) → ∪
𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 × 𝑞))〉} ∈ V) |
| 120 | 119 | ralrimiva 2570 |
. . . . . . 7
⊢ (𝜑 → ∀𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 × 𝑞))〉} ∈ V) |
| 121 | | iunexg 6176 |
. . . . . . 7
⊢ ((𝑉 ∈ V ∧ ∀𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 × 𝑞))〉} ∈ V) → ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 × 𝑞))〉} ∈ V) |
| 122 | 62, 120, 121 | syl2anc 411 |
. . . . . 6
⊢ (𝜑 → ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 × 𝑞))〉} ∈ V) |
| 123 | 49, 122 | eqeltrd 2273 |
. . . . 5
⊢ (𝜑 → ∙ ∈
V) |
| 124 | | opexg 4261 |
. . . . 5
⊢
(((.r‘ndx) ∈ ℕ ∧ ∙ ∈ V) →
〈(.r‘ndx), ∙ 〉 ∈
V) |
| 125 | 104, 123,
124 | sylancr 414 |
. . . 4
⊢ (𝜑 →
〈(.r‘ndx), ∙ 〉 ∈
V) |
| 126 | | tpexg 4479 |
. . . 4
⊢
((〈(Base‘ndx), 𝐵〉 ∈ V ∧
〈(+g‘ndx), ✚ 〉 ∈ V
∧ 〈(.r‘ndx), ∙ 〉 ∈ V)
→ {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx),
✚
〉, 〈(.r‘ndx), ∙ 〉} ∈
V) |
| 127 | 68, 102, 125, 126 | syl3anc 1249 |
. . 3
⊢ (𝜑 → {〈(Base‘ndx),
𝐵〉,
〈(+g‘ndx), ✚ 〉,
〈(.r‘ndx), ∙ 〉} ∈
V) |
| 128 | 3, 54, 63, 58, 127 | ovmpod 6050 |
. 2
⊢ (𝜑 → (𝐹 “s 𝑅) = {〈(Base‘ndx),
𝐵〉,
〈(+g‘ndx), ✚ 〉,
〈(.r‘ndx), ∙
〉}) |
| 129 | 1, 128 | eqtrd 2229 |
1
⊢ (𝜑 → 𝑈 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), ✚ 〉,
〈(.r‘ndx), ∙
〉}) |