ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imasival GIF version

Theorem imasival 12949
Description: Value of an image structure. The is a lemma for the theorems imasbas 12950, imasplusg 12951, and imasmulr 12952 and should not be needed once they are proved. (Contributed by Mario Carneiro, 23-Feb-2015.) (Revised by Jim Kingdon, 11-Mar-2025.) (New usage is discouraged.)
Hypotheses
Ref Expression
imasval.u (𝜑𝑈 = (𝐹s 𝑅))
imasval.v (𝜑𝑉 = (Base‘𝑅))
imasval.p + = (+g𝑅)
imasval.m × = (.r𝑅)
imasval.q · = ( ·𝑠𝑅)
imasval.a (𝜑 = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩})
imasval.t (𝜑 = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩})
imasval.f (𝜑𝐹:𝑉onto𝐵)
imasval.r (𝜑𝑅𝑍)
Assertion
Ref Expression
imasival (𝜑𝑈 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), ⟩})
Distinct variable groups:   𝐹,𝑝,𝑞   𝑅,𝑝,𝑞   𝑉,𝑝,𝑞   𝜑,𝑝,𝑞
Allowed substitution hints:   𝐵(𝑞,𝑝)   + (𝑞,𝑝)   (𝑞,𝑝)   (𝑞,𝑝)   · (𝑞,𝑝)   × (𝑞,𝑝)   𝑈(𝑞,𝑝)   𝑍(𝑞,𝑝)

Proof of Theorem imasival
Dummy variables 𝑓 𝑟 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasval.u . 2 (𝜑𝑈 = (𝐹s 𝑅))
2 df-iimas 12945 . . . 4 s = (𝑓 ∈ V, 𝑟 ∈ V ↦ (Base‘𝑟) / 𝑣{⟨(Base‘ndx), ran 𝑓⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩}⟩})
32a1i 9 . . 3 (𝜑 → “s = (𝑓 ∈ V, 𝑟 ∈ V ↦ (Base‘𝑟) / 𝑣{⟨(Base‘ndx), ran 𝑓⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩}⟩}))
4 basfn 12736 . . . . . 6 Base Fn V
5 vex 2766 . . . . . 6 𝑟 ∈ V
6 funfvex 5575 . . . . . . 7 ((Fun Base ∧ 𝑟 ∈ dom Base) → (Base‘𝑟) ∈ V)
76funfni 5358 . . . . . 6 ((Base Fn V ∧ 𝑟 ∈ V) → (Base‘𝑟) ∈ V)
84, 5, 7mp2an 426 . . . . 5 (Base‘𝑟) ∈ V
98a1i 9 . . . 4 ((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) → (Base‘𝑟) ∈ V)
10 simplrl 535 . . . . . . . 8 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 𝑓 = 𝐹)
1110rneqd 4895 . . . . . . 7 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ran 𝑓 = ran 𝐹)
12 imasval.f . . . . . . . . 9 (𝜑𝐹:𝑉onto𝐵)
13 forn 5483 . . . . . . . . 9 (𝐹:𝑉onto𝐵 → ran 𝐹 = 𝐵)
1412, 13syl 14 . . . . . . . 8 (𝜑 → ran 𝐹 = 𝐵)
1514ad2antrr 488 . . . . . . 7 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ran 𝐹 = 𝐵)
1611, 15eqtrd 2229 . . . . . 6 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ran 𝑓 = 𝐵)
1716opeq2d 3815 . . . . 5 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ⟨(Base‘ndx), ran 𝑓⟩ = ⟨(Base‘ndx), 𝐵⟩)
18 simplrr 536 . . . . . . . . . 10 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 𝑟 = 𝑅)
1918fveq2d 5562 . . . . . . . . 9 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (Base‘𝑟) = (Base‘𝑅))
20 simpr 110 . . . . . . . . 9 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 𝑣 = (Base‘𝑟))
21 imasval.v . . . . . . . . . 10 (𝜑𝑉 = (Base‘𝑅))
2221ad2antrr 488 . . . . . . . . 9 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 𝑉 = (Base‘𝑅))
2319, 20, 223eqtr4d 2239 . . . . . . . 8 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 𝑣 = 𝑉)
2410fveq1d 5560 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (𝑓𝑝) = (𝐹𝑝))
2510fveq1d 5560 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (𝑓𝑞) = (𝐹𝑞))
2624, 25opeq12d 3816 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ⟨(𝑓𝑝), (𝑓𝑞)⟩ = ⟨(𝐹𝑝), (𝐹𝑞)⟩)
2718fveq2d 5562 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (+g𝑟) = (+g𝑅))
28 imasval.p . . . . . . . . . . . . . 14 + = (+g𝑅)
2927, 28eqtr4di 2247 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (+g𝑟) = + )
3029oveqd 5939 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (𝑝(+g𝑟)𝑞) = (𝑝 + 𝑞))
3110, 30fveq12d 5565 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (𝑓‘(𝑝(+g𝑟)𝑞)) = (𝐹‘(𝑝 + 𝑞)))
3226, 31opeq12d 3816 . . . . . . . . . 10 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩ = ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩)
3332sneqd 3635 . . . . . . . . 9 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩} = {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩})
3423, 33iuneq12d 3940 . . . . . . . 8 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩} = 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩})
3523, 34iuneq12d 3940 . . . . . . 7 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩} = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩})
36 imasval.a . . . . . . . 8 (𝜑 = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩})
3736ad2antrr 488 . . . . . . 7 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩})
3835, 37eqtr4d 2232 . . . . . 6 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩} = )
3938opeq2d 3815 . . . . 5 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩}⟩ = ⟨(+g‘ndx), ⟩)
4018fveq2d 5562 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (.r𝑟) = (.r𝑅))
41 imasval.m . . . . . . . . . . . . . 14 × = (.r𝑅)
4240, 41eqtr4di 2247 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (.r𝑟) = × )
4342oveqd 5939 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (𝑝(.r𝑟)𝑞) = (𝑝 × 𝑞))
4410, 43fveq12d 5565 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (𝑓‘(𝑝(.r𝑟)𝑞)) = (𝐹‘(𝑝 × 𝑞)))
4526, 44opeq12d 3816 . . . . . . . . . 10 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩ = ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩)
4645sneqd 3635 . . . . . . . . 9 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩} = {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩})
4723, 46iuneq12d 3940 . . . . . . . 8 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩} = 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩})
4823, 47iuneq12d 3940 . . . . . . 7 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩} = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩})
49 imasval.t . . . . . . . 8 (𝜑 = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩})
5049ad2antrr 488 . . . . . . 7 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩})
5148, 50eqtr4d 2232 . . . . . 6 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩} = )
5251opeq2d 3815 . . . . 5 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩}⟩ = ⟨(.r‘ndx), ⟩)
5317, 39, 52tpeq123d 3714 . . . 4 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → {⟨(Base‘ndx), ran 𝑓⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩}⟩} = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), ⟩})
549, 53csbied 3131 . . 3 ((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) → (Base‘𝑟) / 𝑣{⟨(Base‘ndx), ran 𝑓⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩}⟩} = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), ⟩})
55 fof 5480 . . . . 5 (𝐹:𝑉onto𝐵𝐹:𝑉𝐵)
5612, 55syl 14 . . . 4 (𝜑𝐹:𝑉𝐵)
57 imasval.r . . . . . . 7 (𝜑𝑅𝑍)
5857elexd 2776 . . . . . 6 (𝜑𝑅 ∈ V)
59 funfvex 5575 . . . . . . 7 ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V)
6059funfni 5358 . . . . . 6 ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V)
614, 58, 60sylancr 414 . . . . 5 (𝜑 → (Base‘𝑅) ∈ V)
6221, 61eqeltrd 2273 . . . 4 (𝜑𝑉 ∈ V)
6356, 62fexd 5792 . . 3 (𝜑𝐹 ∈ V)
64 basendxnn 12734 . . . . 5 (Base‘ndx) ∈ ℕ
65 focdmex 6172 . . . . . 6 (𝑉 ∈ V → (𝐹:𝑉onto𝐵𝐵 ∈ V))
6662, 12, 65sylc 62 . . . . 5 (𝜑𝐵 ∈ V)
67 opexg 4261 . . . . 5 (((Base‘ndx) ∈ ℕ ∧ 𝐵 ∈ V) → ⟨(Base‘ndx), 𝐵⟩ ∈ V)
6864, 66, 67sylancr 414 . . . 4 (𝜑 → ⟨(Base‘ndx), 𝐵⟩ ∈ V)
69 plusgndxnn 12789 . . . . 5 (+g‘ndx) ∈ ℕ
7063ad2antrr 488 . . . . . . . . . . . . . 14 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → 𝐹 ∈ V)
71 vex 2766 . . . . . . . . . . . . . . 15 𝑝 ∈ V
7271a1i 9 . . . . . . . . . . . . . 14 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → 𝑝 ∈ V)
73 fvexg 5577 . . . . . . . . . . . . . 14 ((𝐹 ∈ V ∧ 𝑝 ∈ V) → (𝐹𝑝) ∈ V)
7470, 72, 73syl2anc 411 . . . . . . . . . . . . 13 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → (𝐹𝑝) ∈ V)
75 vex 2766 . . . . . . . . . . . . . . 15 𝑞 ∈ V
7675a1i 9 . . . . . . . . . . . . . 14 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → 𝑞 ∈ V)
77 fvexg 5577 . . . . . . . . . . . . . 14 ((𝐹 ∈ V ∧ 𝑞 ∈ V) → (𝐹𝑞) ∈ V)
7870, 76, 77syl2anc 411 . . . . . . . . . . . . 13 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → (𝐹𝑞) ∈ V)
79 opexg 4261 . . . . . . . . . . . . 13 (((𝐹𝑝) ∈ V ∧ (𝐹𝑞) ∈ V) → ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ V)
8074, 78, 79syl2anc 411 . . . . . . . . . . . 12 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ V)
81 plusgslid 12790 . . . . . . . . . . . . . . . . . 18 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
8281slotex 12705 . . . . . . . . . . . . . . . . 17 (𝑅𝑍 → (+g𝑅) ∈ V)
8357, 82syl 14 . . . . . . . . . . . . . . . 16 (𝜑 → (+g𝑅) ∈ V)
8428, 83eqeltrid 2283 . . . . . . . . . . . . . . 15 (𝜑+ ∈ V)
8584ad2antrr 488 . . . . . . . . . . . . . 14 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → + ∈ V)
86 ovexg 5956 . . . . . . . . . . . . . 14 ((𝑝 ∈ V ∧ + ∈ V ∧ 𝑞 ∈ V) → (𝑝 + 𝑞) ∈ V)
8772, 85, 76, 86syl3anc 1249 . . . . . . . . . . . . 13 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → (𝑝 + 𝑞) ∈ V)
88 fvexg 5577 . . . . . . . . . . . . 13 ((𝐹 ∈ V ∧ (𝑝 + 𝑞) ∈ V) → (𝐹‘(𝑝 + 𝑞)) ∈ V)
8970, 87, 88syl2anc 411 . . . . . . . . . . . 12 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → (𝐹‘(𝑝 + 𝑞)) ∈ V)
90 opexg 4261 . . . . . . . . . . . 12 ((⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ V ∧ (𝐹‘(𝑝 + 𝑞)) ∈ V) → ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩ ∈ V)
9180, 89, 90syl2anc 411 . . . . . . . . . . 11 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩ ∈ V)
92 snexg 4217 . . . . . . . . . . 11 (⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩ ∈ V → {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩} ∈ V)
9391, 92syl 14 . . . . . . . . . 10 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩} ∈ V)
9493ralrimiva 2570 . . . . . . . . 9 ((𝜑𝑝𝑉) → ∀𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩} ∈ V)
95 iunexg 6176 . . . . . . . . 9 ((𝑉 ∈ V ∧ ∀𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩} ∈ V) → 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩} ∈ V)
9662, 94, 95syl2an2r 595 . . . . . . . 8 ((𝜑𝑝𝑉) → 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩} ∈ V)
9796ralrimiva 2570 . . . . . . 7 (𝜑 → ∀𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩} ∈ V)
98 iunexg 6176 . . . . . . 7 ((𝑉 ∈ V ∧ ∀𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩} ∈ V) → 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩} ∈ V)
9962, 97, 98syl2anc 411 . . . . . 6 (𝜑 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩} ∈ V)
10036, 99eqeltrd 2273 . . . . 5 (𝜑 ∈ V)
101 opexg 4261 . . . . 5 (((+g‘ndx) ∈ ℕ ∧ ∈ V) → ⟨(+g‘ndx), ⟩ ∈ V)
10269, 100, 101sylancr 414 . . . 4 (𝜑 → ⟨(+g‘ndx), ⟩ ∈ V)
103 mulrslid 12809 . . . . . 6 (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ)
104103simpri 113 . . . . 5 (.r‘ndx) ∈ ℕ
105103slotex 12705 . . . . . . . . . . . . . . . . 17 (𝑅𝑍 → (.r𝑅) ∈ V)
10657, 105syl 14 . . . . . . . . . . . . . . . 16 (𝜑 → (.r𝑅) ∈ V)
10741, 106eqeltrid 2283 . . . . . . . . . . . . . . 15 (𝜑× ∈ V)
108107ad2antrr 488 . . . . . . . . . . . . . 14 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → × ∈ V)
109 ovexg 5956 . . . . . . . . . . . . . 14 ((𝑝 ∈ V ∧ × ∈ V ∧ 𝑞 ∈ V) → (𝑝 × 𝑞) ∈ V)
11072, 108, 76, 109syl3anc 1249 . . . . . . . . . . . . 13 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → (𝑝 × 𝑞) ∈ V)
111 fvexg 5577 . . . . . . . . . . . . 13 ((𝐹 ∈ V ∧ (𝑝 × 𝑞) ∈ V) → (𝐹‘(𝑝 × 𝑞)) ∈ V)
11270, 110, 111syl2anc 411 . . . . . . . . . . . 12 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → (𝐹‘(𝑝 × 𝑞)) ∈ V)
113 opexg 4261 . . . . . . . . . . . 12 ((⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ V ∧ (𝐹‘(𝑝 × 𝑞)) ∈ V) → ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩ ∈ V)
11480, 112, 113syl2anc 411 . . . . . . . . . . 11 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩ ∈ V)
115 snexg 4217 . . . . . . . . . . 11 (⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩ ∈ V → {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩} ∈ V)
116114, 115syl 14 . . . . . . . . . 10 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩} ∈ V)
117116ralrimiva 2570 . . . . . . . . 9 ((𝜑𝑝𝑉) → ∀𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩} ∈ V)
118 iunexg 6176 . . . . . . . . 9 ((𝑉 ∈ V ∧ ∀𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩} ∈ V) → 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩} ∈ V)
11962, 117, 118syl2an2r 595 . . . . . . . 8 ((𝜑𝑝𝑉) → 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩} ∈ V)
120119ralrimiva 2570 . . . . . . 7 (𝜑 → ∀𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩} ∈ V)
121 iunexg 6176 . . . . . . 7 ((𝑉 ∈ V ∧ ∀𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩} ∈ V) → 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩} ∈ V)
12262, 120, 121syl2anc 411 . . . . . 6 (𝜑 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩} ∈ V)
12349, 122eqeltrd 2273 . . . . 5 (𝜑 ∈ V)
124 opexg 4261 . . . . 5 (((.r‘ndx) ∈ ℕ ∧ ∈ V) → ⟨(.r‘ndx), ⟩ ∈ V)
125104, 123, 124sylancr 414 . . . 4 (𝜑 → ⟨(.r‘ndx), ⟩ ∈ V)
126 tpexg 4479 . . . 4 ((⟨(Base‘ndx), 𝐵⟩ ∈ V ∧ ⟨(+g‘ndx), ⟩ ∈ V ∧ ⟨(.r‘ndx), ⟩ ∈ V) → {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), ⟩} ∈ V)
12768, 102, 125, 126syl3anc 1249 . . 3 (𝜑 → {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), ⟩} ∈ V)
1283, 54, 63, 58, 127ovmpod 6050 . 2 (𝜑 → (𝐹s 𝑅) = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), ⟩})
1291, 128eqtrd 2229 1 (𝜑𝑈 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), ⟩})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  wral 2475  Vcvv 2763  csb 3084  {csn 3622  {ctp 3624  cop 3625   ciun 3916  ran crn 4664   Fn wfn 5253  wf 5254  ontowfo 5256  cfv 5258  (class class class)co 5922  cmpo 5924  cn 8990  ndxcnx 12675  Slot cslot 12677  Basecbs 12678  +gcplusg 12755  .rcmulr 12756   ·𝑠 cvsca 12759  s cimas 12942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-tp 3630  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-inn 8991  df-2 9049  df-3 9050  df-ndx 12681  df-slot 12682  df-base 12684  df-plusg 12768  df-mulr 12769  df-iimas 12945
This theorem is referenced by:  imasbas  12950  imasplusg  12951  imasmulr  12952
  Copyright terms: Public domain W3C validator