ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imasival GIF version

Theorem imasival 12889
Description: Value of an image structure. The is a lemma for the theorems imasbas 12890, imasplusg 12891, and imasmulr 12892 and should not be needed once they are proved. (Contributed by Mario Carneiro, 23-Feb-2015.) (Revised by Jim Kingdon, 11-Mar-2025.) (New usage is discouraged.)
Hypotheses
Ref Expression
imasval.u (𝜑𝑈 = (𝐹s 𝑅))
imasval.v (𝜑𝑉 = (Base‘𝑅))
imasval.p + = (+g𝑅)
imasval.m × = (.r𝑅)
imasval.q · = ( ·𝑠𝑅)
imasval.a (𝜑 = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩})
imasval.t (𝜑 = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩})
imasval.f (𝜑𝐹:𝑉onto𝐵)
imasval.r (𝜑𝑅𝑍)
Assertion
Ref Expression
imasival (𝜑𝑈 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), ⟩})
Distinct variable groups:   𝐹,𝑝,𝑞   𝑅,𝑝,𝑞   𝑉,𝑝,𝑞   𝜑,𝑝,𝑞
Allowed substitution hints:   𝐵(𝑞,𝑝)   + (𝑞,𝑝)   (𝑞,𝑝)   (𝑞,𝑝)   · (𝑞,𝑝)   × (𝑞,𝑝)   𝑈(𝑞,𝑝)   𝑍(𝑞,𝑝)

Proof of Theorem imasival
Dummy variables 𝑓 𝑟 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasval.u . 2 (𝜑𝑈 = (𝐹s 𝑅))
2 df-iimas 12885 . . . 4 s = (𝑓 ∈ V, 𝑟 ∈ V ↦ (Base‘𝑟) / 𝑣{⟨(Base‘ndx), ran 𝑓⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩}⟩})
32a1i 9 . . 3 (𝜑 → “s = (𝑓 ∈ V, 𝑟 ∈ V ↦ (Base‘𝑟) / 𝑣{⟨(Base‘ndx), ran 𝑓⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩}⟩}))
4 basfn 12676 . . . . . 6 Base Fn V
5 vex 2763 . . . . . 6 𝑟 ∈ V
6 funfvex 5571 . . . . . . 7 ((Fun Base ∧ 𝑟 ∈ dom Base) → (Base‘𝑟) ∈ V)
76funfni 5354 . . . . . 6 ((Base Fn V ∧ 𝑟 ∈ V) → (Base‘𝑟) ∈ V)
84, 5, 7mp2an 426 . . . . 5 (Base‘𝑟) ∈ V
98a1i 9 . . . 4 ((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) → (Base‘𝑟) ∈ V)
10 simplrl 535 . . . . . . . 8 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 𝑓 = 𝐹)
1110rneqd 4891 . . . . . . 7 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ran 𝑓 = ran 𝐹)
12 imasval.f . . . . . . . . 9 (𝜑𝐹:𝑉onto𝐵)
13 forn 5479 . . . . . . . . 9 (𝐹:𝑉onto𝐵 → ran 𝐹 = 𝐵)
1412, 13syl 14 . . . . . . . 8 (𝜑 → ran 𝐹 = 𝐵)
1514ad2antrr 488 . . . . . . 7 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ran 𝐹 = 𝐵)
1611, 15eqtrd 2226 . . . . . 6 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ran 𝑓 = 𝐵)
1716opeq2d 3811 . . . . 5 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ⟨(Base‘ndx), ran 𝑓⟩ = ⟨(Base‘ndx), 𝐵⟩)
18 simplrr 536 . . . . . . . . . 10 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 𝑟 = 𝑅)
1918fveq2d 5558 . . . . . . . . 9 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (Base‘𝑟) = (Base‘𝑅))
20 simpr 110 . . . . . . . . 9 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 𝑣 = (Base‘𝑟))
21 imasval.v . . . . . . . . . 10 (𝜑𝑉 = (Base‘𝑅))
2221ad2antrr 488 . . . . . . . . 9 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 𝑉 = (Base‘𝑅))
2319, 20, 223eqtr4d 2236 . . . . . . . 8 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 𝑣 = 𝑉)
2410fveq1d 5556 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (𝑓𝑝) = (𝐹𝑝))
2510fveq1d 5556 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (𝑓𝑞) = (𝐹𝑞))
2624, 25opeq12d 3812 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ⟨(𝑓𝑝), (𝑓𝑞)⟩ = ⟨(𝐹𝑝), (𝐹𝑞)⟩)
2718fveq2d 5558 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (+g𝑟) = (+g𝑅))
28 imasval.p . . . . . . . . . . . . . 14 + = (+g𝑅)
2927, 28eqtr4di 2244 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (+g𝑟) = + )
3029oveqd 5935 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (𝑝(+g𝑟)𝑞) = (𝑝 + 𝑞))
3110, 30fveq12d 5561 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (𝑓‘(𝑝(+g𝑟)𝑞)) = (𝐹‘(𝑝 + 𝑞)))
3226, 31opeq12d 3812 . . . . . . . . . 10 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩ = ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩)
3332sneqd 3631 . . . . . . . . 9 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩} = {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩})
3423, 33iuneq12d 3936 . . . . . . . 8 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩} = 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩})
3523, 34iuneq12d 3936 . . . . . . 7 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩} = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩})
36 imasval.a . . . . . . . 8 (𝜑 = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩})
3736ad2antrr 488 . . . . . . 7 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩})
3835, 37eqtr4d 2229 . . . . . 6 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩} = )
3938opeq2d 3811 . . . . 5 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩}⟩ = ⟨(+g‘ndx), ⟩)
4018fveq2d 5558 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (.r𝑟) = (.r𝑅))
41 imasval.m . . . . . . . . . . . . . 14 × = (.r𝑅)
4240, 41eqtr4di 2244 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (.r𝑟) = × )
4342oveqd 5935 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (𝑝(.r𝑟)𝑞) = (𝑝 × 𝑞))
4410, 43fveq12d 5561 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (𝑓‘(𝑝(.r𝑟)𝑞)) = (𝐹‘(𝑝 × 𝑞)))
4526, 44opeq12d 3812 . . . . . . . . . 10 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩ = ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩)
4645sneqd 3631 . . . . . . . . 9 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩} = {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩})
4723, 46iuneq12d 3936 . . . . . . . 8 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩} = 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩})
4823, 47iuneq12d 3936 . . . . . . 7 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩} = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩})
49 imasval.t . . . . . . . 8 (𝜑 = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩})
5049ad2antrr 488 . . . . . . 7 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩})
5148, 50eqtr4d 2229 . . . . . 6 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩} = )
5251opeq2d 3811 . . . . 5 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩}⟩ = ⟨(.r‘ndx), ⟩)
5317, 39, 52tpeq123d 3710 . . . 4 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → {⟨(Base‘ndx), ran 𝑓⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩}⟩} = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), ⟩})
549, 53csbied 3127 . . 3 ((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) → (Base‘𝑟) / 𝑣{⟨(Base‘ndx), ran 𝑓⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩}⟩} = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), ⟩})
55 fof 5476 . . . . 5 (𝐹:𝑉onto𝐵𝐹:𝑉𝐵)
5612, 55syl 14 . . . 4 (𝜑𝐹:𝑉𝐵)
57 imasval.r . . . . . . 7 (𝜑𝑅𝑍)
5857elexd 2773 . . . . . 6 (𝜑𝑅 ∈ V)
59 funfvex 5571 . . . . . . 7 ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V)
6059funfni 5354 . . . . . 6 ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V)
614, 58, 60sylancr 414 . . . . 5 (𝜑 → (Base‘𝑅) ∈ V)
6221, 61eqeltrd 2270 . . . 4 (𝜑𝑉 ∈ V)
6356, 62fexd 5788 . . 3 (𝜑𝐹 ∈ V)
64 basendxnn 12674 . . . . 5 (Base‘ndx) ∈ ℕ
65 focdmex 6167 . . . . . 6 (𝑉 ∈ V → (𝐹:𝑉onto𝐵𝐵 ∈ V))
6662, 12, 65sylc 62 . . . . 5 (𝜑𝐵 ∈ V)
67 opexg 4257 . . . . 5 (((Base‘ndx) ∈ ℕ ∧ 𝐵 ∈ V) → ⟨(Base‘ndx), 𝐵⟩ ∈ V)
6864, 66, 67sylancr 414 . . . 4 (𝜑 → ⟨(Base‘ndx), 𝐵⟩ ∈ V)
69 plusgndxnn 12729 . . . . 5 (+g‘ndx) ∈ ℕ
7063ad2antrr 488 . . . . . . . . . . . . . 14 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → 𝐹 ∈ V)
71 vex 2763 . . . . . . . . . . . . . . 15 𝑝 ∈ V
7271a1i 9 . . . . . . . . . . . . . 14 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → 𝑝 ∈ V)
73 fvexg 5573 . . . . . . . . . . . . . 14 ((𝐹 ∈ V ∧ 𝑝 ∈ V) → (𝐹𝑝) ∈ V)
7470, 72, 73syl2anc 411 . . . . . . . . . . . . 13 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → (𝐹𝑝) ∈ V)
75 vex 2763 . . . . . . . . . . . . . . 15 𝑞 ∈ V
7675a1i 9 . . . . . . . . . . . . . 14 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → 𝑞 ∈ V)
77 fvexg 5573 . . . . . . . . . . . . . 14 ((𝐹 ∈ V ∧ 𝑞 ∈ V) → (𝐹𝑞) ∈ V)
7870, 76, 77syl2anc 411 . . . . . . . . . . . . 13 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → (𝐹𝑞) ∈ V)
79 opexg 4257 . . . . . . . . . . . . 13 (((𝐹𝑝) ∈ V ∧ (𝐹𝑞) ∈ V) → ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ V)
8074, 78, 79syl2anc 411 . . . . . . . . . . . 12 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ V)
81 plusgslid 12730 . . . . . . . . . . . . . . . . . 18 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
8281slotex 12645 . . . . . . . . . . . . . . . . 17 (𝑅𝑍 → (+g𝑅) ∈ V)
8357, 82syl 14 . . . . . . . . . . . . . . . 16 (𝜑 → (+g𝑅) ∈ V)
8428, 83eqeltrid 2280 . . . . . . . . . . . . . . 15 (𝜑+ ∈ V)
8584ad2antrr 488 . . . . . . . . . . . . . 14 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → + ∈ V)
86 ovexg 5952 . . . . . . . . . . . . . 14 ((𝑝 ∈ V ∧ + ∈ V ∧ 𝑞 ∈ V) → (𝑝 + 𝑞) ∈ V)
8772, 85, 76, 86syl3anc 1249 . . . . . . . . . . . . 13 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → (𝑝 + 𝑞) ∈ V)
88 fvexg 5573 . . . . . . . . . . . . 13 ((𝐹 ∈ V ∧ (𝑝 + 𝑞) ∈ V) → (𝐹‘(𝑝 + 𝑞)) ∈ V)
8970, 87, 88syl2anc 411 . . . . . . . . . . . 12 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → (𝐹‘(𝑝 + 𝑞)) ∈ V)
90 opexg 4257 . . . . . . . . . . . 12 ((⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ V ∧ (𝐹‘(𝑝 + 𝑞)) ∈ V) → ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩ ∈ V)
9180, 89, 90syl2anc 411 . . . . . . . . . . 11 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩ ∈ V)
92 snexg 4213 . . . . . . . . . . 11 (⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩ ∈ V → {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩} ∈ V)
9391, 92syl 14 . . . . . . . . . 10 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩} ∈ V)
9493ralrimiva 2567 . . . . . . . . 9 ((𝜑𝑝𝑉) → ∀𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩} ∈ V)
95 iunexg 6171 . . . . . . . . 9 ((𝑉 ∈ V ∧ ∀𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩} ∈ V) → 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩} ∈ V)
9662, 94, 95syl2an2r 595 . . . . . . . 8 ((𝜑𝑝𝑉) → 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩} ∈ V)
9796ralrimiva 2567 . . . . . . 7 (𝜑 → ∀𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩} ∈ V)
98 iunexg 6171 . . . . . . 7 ((𝑉 ∈ V ∧ ∀𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩} ∈ V) → 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩} ∈ V)
9962, 97, 98syl2anc 411 . . . . . 6 (𝜑 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩} ∈ V)
10036, 99eqeltrd 2270 . . . . 5 (𝜑 ∈ V)
101 opexg 4257 . . . . 5 (((+g‘ndx) ∈ ℕ ∧ ∈ V) → ⟨(+g‘ndx), ⟩ ∈ V)
10269, 100, 101sylancr 414 . . . 4 (𝜑 → ⟨(+g‘ndx), ⟩ ∈ V)
103 mulrslid 12749 . . . . . 6 (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ)
104103simpri 113 . . . . 5 (.r‘ndx) ∈ ℕ
105103slotex 12645 . . . . . . . . . . . . . . . . 17 (𝑅𝑍 → (.r𝑅) ∈ V)
10657, 105syl 14 . . . . . . . . . . . . . . . 16 (𝜑 → (.r𝑅) ∈ V)
10741, 106eqeltrid 2280 . . . . . . . . . . . . . . 15 (𝜑× ∈ V)
108107ad2antrr 488 . . . . . . . . . . . . . 14 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → × ∈ V)
109 ovexg 5952 . . . . . . . . . . . . . 14 ((𝑝 ∈ V ∧ × ∈ V ∧ 𝑞 ∈ V) → (𝑝 × 𝑞) ∈ V)
11072, 108, 76, 109syl3anc 1249 . . . . . . . . . . . . 13 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → (𝑝 × 𝑞) ∈ V)
111 fvexg 5573 . . . . . . . . . . . . 13 ((𝐹 ∈ V ∧ (𝑝 × 𝑞) ∈ V) → (𝐹‘(𝑝 × 𝑞)) ∈ V)
11270, 110, 111syl2anc 411 . . . . . . . . . . . 12 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → (𝐹‘(𝑝 × 𝑞)) ∈ V)
113 opexg 4257 . . . . . . . . . . . 12 ((⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ V ∧ (𝐹‘(𝑝 × 𝑞)) ∈ V) → ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩ ∈ V)
11480, 112, 113syl2anc 411 . . . . . . . . . . 11 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩ ∈ V)
115 snexg 4213 . . . . . . . . . . 11 (⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩ ∈ V → {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩} ∈ V)
116114, 115syl 14 . . . . . . . . . 10 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩} ∈ V)
117116ralrimiva 2567 . . . . . . . . 9 ((𝜑𝑝𝑉) → ∀𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩} ∈ V)
118 iunexg 6171 . . . . . . . . 9 ((𝑉 ∈ V ∧ ∀𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩} ∈ V) → 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩} ∈ V)
11962, 117, 118syl2an2r 595 . . . . . . . 8 ((𝜑𝑝𝑉) → 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩} ∈ V)
120119ralrimiva 2567 . . . . . . 7 (𝜑 → ∀𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩} ∈ V)
121 iunexg 6171 . . . . . . 7 ((𝑉 ∈ V ∧ ∀𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩} ∈ V) → 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩} ∈ V)
12262, 120, 121syl2anc 411 . . . . . 6 (𝜑 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩} ∈ V)
12349, 122eqeltrd 2270 . . . . 5 (𝜑 ∈ V)
124 opexg 4257 . . . . 5 (((.r‘ndx) ∈ ℕ ∧ ∈ V) → ⟨(.r‘ndx), ⟩ ∈ V)
125104, 123, 124sylancr 414 . . . 4 (𝜑 → ⟨(.r‘ndx), ⟩ ∈ V)
126 tpexg 4475 . . . 4 ((⟨(Base‘ndx), 𝐵⟩ ∈ V ∧ ⟨(+g‘ndx), ⟩ ∈ V ∧ ⟨(.r‘ndx), ⟩ ∈ V) → {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), ⟩} ∈ V)
12768, 102, 125, 126syl3anc 1249 . . 3 (𝜑 → {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), ⟩} ∈ V)
1283, 54, 63, 58, 127ovmpod 6046 . 2 (𝜑 → (𝐹s 𝑅) = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), ⟩})
1291, 128eqtrd 2226 1 (𝜑𝑈 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), ⟩})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  wral 2472  Vcvv 2760  csb 3080  {csn 3618  {ctp 3620  cop 3621   ciun 3912  ran crn 4660   Fn wfn 5249  wf 5250  ontowfo 5252  cfv 5254  (class class class)co 5918  cmpo 5920  cn 8982  ndxcnx 12615  Slot cslot 12617  Basecbs 12618  +gcplusg 12695  .rcmulr 12696   ·𝑠 cvsca 12699  s cimas 12882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-tp 3626  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-inn 8983  df-2 9041  df-3 9042  df-ndx 12621  df-slot 12622  df-base 12624  df-plusg 12708  df-mulr 12709  df-iimas 12885
This theorem is referenced by:  imasbas  12890  imasplusg  12891  imasmulr  12892
  Copyright terms: Public domain W3C validator