Step | Hyp | Ref
| Expression |
1 | | imasval.u |
. 2
β’ (π β π = (πΉ βs π
)) |
2 | | df-iimas 12722 |
. . . 4
β’
βs = (π β V, π β V β¦
β¦(Baseβπ) / π£β¦{β¨(Baseβndx), ran
πβ©,
β¨(+gβndx), βͺ π β π£ βͺ π β π£ {β¨β¨(πβπ), (πβπ)β©, (πβ(π(+gβπ)π))β©}β©,
β¨(.rβndx), βͺ π β π£ βͺ π β π£ {β¨β¨(πβπ), (πβπ)β©, (πβ(π(.rβπ)π))β©}β©}) |
3 | 2 | a1i 9 |
. . 3
β’ (π β βs
= (π β V, π β V β¦
β¦(Baseβπ) / π£β¦{β¨(Baseβndx), ran
πβ©,
β¨(+gβndx), βͺ π β π£ βͺ π β π£ {β¨β¨(πβπ), (πβπ)β©, (πβ(π(+gβπ)π))β©}β©,
β¨(.rβndx), βͺ π β π£ βͺ π β π£ {β¨β¨(πβπ), (πβπ)β©, (πβ(π(.rβπ)π))β©}β©})) |
4 | | basfn 12519 |
. . . . . 6
β’ Base Fn
V |
5 | | vex 2740 |
. . . . . 6
β’ π β V |
6 | | funfvex 5532 |
. . . . . . 7
β’ ((Fun
Base β§ π β dom
Base) β (Baseβπ)
β V) |
7 | 6 | funfni 5316 |
. . . . . 6
β’ ((Base Fn
V β§ π β V) β
(Baseβπ) β
V) |
8 | 4, 5, 7 | mp2an 426 |
. . . . 5
β’
(Baseβπ)
β V |
9 | 8 | a1i 9 |
. . . 4
β’ ((π β§ (π = πΉ β§ π = π
)) β (Baseβπ) β V) |
10 | | simplrl 535 |
. . . . . . . 8
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β π = πΉ) |
11 | 10 | rneqd 4856 |
. . . . . . 7
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β ran π = ran πΉ) |
12 | | imasval.f |
. . . . . . . . 9
β’ (π β πΉ:πβontoβπ΅) |
13 | | forn 5441 |
. . . . . . . . 9
β’ (πΉ:πβontoβπ΅ β ran πΉ = π΅) |
14 | 12, 13 | syl 14 |
. . . . . . . 8
β’ (π β ran πΉ = π΅) |
15 | 14 | ad2antrr 488 |
. . . . . . 7
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β ran πΉ = π΅) |
16 | 11, 15 | eqtrd 2210 |
. . . . . 6
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β ran π = π΅) |
17 | 16 | opeq2d 3785 |
. . . . 5
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β β¨(Baseβndx), ran πβ© = β¨(Baseβndx),
π΅β©) |
18 | | simplrr 536 |
. . . . . . . . . 10
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β π = π
) |
19 | 18 | fveq2d 5519 |
. . . . . . . . 9
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β (Baseβπ) = (Baseβπ
)) |
20 | | simpr 110 |
. . . . . . . . 9
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β π£ = (Baseβπ)) |
21 | | imasval.v |
. . . . . . . . . 10
β’ (π β π = (Baseβπ
)) |
22 | 21 | ad2antrr 488 |
. . . . . . . . 9
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β π = (Baseβπ
)) |
23 | 19, 20, 22 | 3eqtr4d 2220 |
. . . . . . . 8
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β π£ = π) |
24 | 10 | fveq1d 5517 |
. . . . . . . . . . . 12
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β (πβπ) = (πΉβπ)) |
25 | 10 | fveq1d 5517 |
. . . . . . . . . . . 12
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β (πβπ) = (πΉβπ)) |
26 | 24, 25 | opeq12d 3786 |
. . . . . . . . . . 11
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β β¨(πβπ), (πβπ)β© = β¨(πΉβπ), (πΉβπ)β©) |
27 | 18 | fveq2d 5519 |
. . . . . . . . . . . . . 14
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β (+gβπ) = (+gβπ
)) |
28 | | imasval.p |
. . . . . . . . . . . . . 14
β’ + =
(+gβπ
) |
29 | 27, 28 | eqtr4di 2228 |
. . . . . . . . . . . . 13
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β (+gβπ) = + ) |
30 | 29 | oveqd 5891 |
. . . . . . . . . . . 12
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β (π(+gβπ)π) = (π + π)) |
31 | 10, 30 | fveq12d 5522 |
. . . . . . . . . . 11
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β (πβ(π(+gβπ)π)) = (πΉβ(π + π))) |
32 | 26, 31 | opeq12d 3786 |
. . . . . . . . . 10
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β β¨β¨(πβπ), (πβπ)β©, (πβ(π(+gβπ)π))β© = β¨β¨(πΉβπ), (πΉβπ)β©, (πΉβ(π + π))β©) |
33 | 32 | sneqd 3605 |
. . . . . . . . 9
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β {β¨β¨(πβπ), (πβπ)β©, (πβ(π(+gβπ)π))β©} = {β¨β¨(πΉβπ), (πΉβπ)β©, (πΉβ(π + π))β©}) |
34 | 23, 33 | iuneq12d 3910 |
. . . . . . . 8
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β βͺ
π β π£ {β¨β¨(πβπ), (πβπ)β©, (πβ(π(+gβπ)π))β©} = βͺ π β π {β¨β¨(πΉβπ), (πΉβπ)β©, (πΉβ(π + π))β©}) |
35 | 23, 34 | iuneq12d 3910 |
. . . . . . 7
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β βͺ
π β π£ βͺ π β π£ {β¨β¨(πβπ), (πβπ)β©, (πβ(π(+gβπ)π))β©} = βͺ π β π βͺ π β π {β¨β¨(πΉβπ), (πΉβπ)β©, (πΉβ(π + π))β©}) |
36 | | imasval.a |
. . . . . . . 8
β’ (π β β = βͺ π β π βͺ π β π {β¨β¨(πΉβπ), (πΉβπ)β©, (πΉβ(π + π))β©}) |
37 | 36 | ad2antrr 488 |
. . . . . . 7
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β β = βͺ π β π βͺ π β π {β¨β¨(πΉβπ), (πΉβπ)β©, (πΉβ(π + π))β©}) |
38 | 35, 37 | eqtr4d 2213 |
. . . . . 6
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β βͺ
π β π£ βͺ π β π£ {β¨β¨(πβπ), (πβπ)β©, (πβ(π(+gβπ)π))β©} = β ) |
39 | 38 | opeq2d 3785 |
. . . . 5
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β β¨(+gβndx),
βͺ π β π£ βͺ π β π£ {β¨β¨(πβπ), (πβπ)β©, (πβ(π(+gβπ)π))β©}β© =
β¨(+gβndx), β
β©) |
40 | 18 | fveq2d 5519 |
. . . . . . . . . . . . . 14
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β (.rβπ) = (.rβπ
)) |
41 | | imasval.m |
. . . . . . . . . . . . . 14
β’ Γ =
(.rβπ
) |
42 | 40, 41 | eqtr4di 2228 |
. . . . . . . . . . . . 13
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β (.rβπ) = Γ ) |
43 | 42 | oveqd 5891 |
. . . . . . . . . . . 12
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β (π(.rβπ)π) = (π Γ π)) |
44 | 10, 43 | fveq12d 5522 |
. . . . . . . . . . 11
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β (πβ(π(.rβπ)π)) = (πΉβ(π Γ π))) |
45 | 26, 44 | opeq12d 3786 |
. . . . . . . . . 10
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β β¨β¨(πβπ), (πβπ)β©, (πβ(π(.rβπ)π))β© = β¨β¨(πΉβπ), (πΉβπ)β©, (πΉβ(π Γ π))β©) |
46 | 45 | sneqd 3605 |
. . . . . . . . 9
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β {β¨β¨(πβπ), (πβπ)β©, (πβ(π(.rβπ)π))β©} = {β¨β¨(πΉβπ), (πΉβπ)β©, (πΉβ(π Γ π))β©}) |
47 | 23, 46 | iuneq12d 3910 |
. . . . . . . 8
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β βͺ
π β π£ {β¨β¨(πβπ), (πβπ)β©, (πβ(π(.rβπ)π))β©} = βͺ π β π {β¨β¨(πΉβπ), (πΉβπ)β©, (πΉβ(π Γ π))β©}) |
48 | 23, 47 | iuneq12d 3910 |
. . . . . . 7
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β βͺ
π β π£ βͺ π β π£ {β¨β¨(πβπ), (πβπ)β©, (πβ(π(.rβπ)π))β©} = βͺ π β π βͺ π β π {β¨β¨(πΉβπ), (πΉβπ)β©, (πΉβ(π Γ π))β©}) |
49 | | imasval.t |
. . . . . . . 8
β’ (π β β = βͺ π β π βͺ π β π {β¨β¨(πΉβπ), (πΉβπ)β©, (πΉβ(π Γ π))β©}) |
50 | 49 | ad2antrr 488 |
. . . . . . 7
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β β = βͺ π β π βͺ π β π {β¨β¨(πΉβπ), (πΉβπ)β©, (πΉβ(π Γ π))β©}) |
51 | 48, 50 | eqtr4d 2213 |
. . . . . 6
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β βͺ
π β π£ βͺ π β π£ {β¨β¨(πβπ), (πβπ)β©, (πβ(π(.rβπ)π))β©} = β ) |
52 | 51 | opeq2d 3785 |
. . . . 5
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β β¨(.rβndx),
βͺ π β π£ βͺ π β π£ {β¨β¨(πβπ), (πβπ)β©, (πβ(π(.rβπ)π))β©}β© =
β¨(.rβndx), β
β©) |
53 | 17, 39, 52 | tpeq123d 3684 |
. . . 4
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β {β¨(Baseβndx), ran πβ©,
β¨(+gβndx), βͺ π β π£ βͺ π β π£ {β¨β¨(πβπ), (πβπ)β©, (πβ(π(+gβπ)π))β©}β©,
β¨(.rβndx), βͺ π β π£ βͺ π β π£ {β¨β¨(πβπ), (πβπ)β©, (πβ(π(.rβπ)π))β©}β©} = {β¨(Baseβndx),
π΅β©,
β¨(+gβndx), β β©,
β¨(.rβndx), β
β©}) |
54 | 9, 53 | csbied 3103 |
. . 3
β’ ((π β§ (π = πΉ β§ π = π
)) β β¦(Baseβπ) / π£β¦{β¨(Baseβndx), ran
πβ©,
β¨(+gβndx), βͺ π β π£ βͺ π β π£ {β¨β¨(πβπ), (πβπ)β©, (πβ(π(+gβπ)π))β©}β©,
β¨(.rβndx), βͺ π β π£ βͺ π β π£ {β¨β¨(πβπ), (πβπ)β©, (πβ(π(.rβπ)π))β©}β©} = {β¨(Baseβndx),
π΅β©,
β¨(+gβndx), β β©,
β¨(.rβndx), β
β©}) |
55 | | fof 5438 |
. . . . 5
β’ (πΉ:πβontoβπ΅ β πΉ:πβΆπ΅) |
56 | 12, 55 | syl 14 |
. . . 4
β’ (π β πΉ:πβΆπ΅) |
57 | | imasval.r |
. . . . . . 7
β’ (π β π
β π) |
58 | 57 | elexd 2750 |
. . . . . 6
β’ (π β π
β V) |
59 | | funfvex 5532 |
. . . . . . 7
β’ ((Fun
Base β§ π
β dom
Base) β (Baseβπ
)
β V) |
60 | 59 | funfni 5316 |
. . . . . 6
β’ ((Base Fn
V β§ π
β V) β
(Baseβπ
) β
V) |
61 | 4, 58, 60 | sylancr 414 |
. . . . 5
β’ (π β (Baseβπ
) β V) |
62 | 21, 61 | eqeltrd 2254 |
. . . 4
β’ (π β π β V) |
63 | 56, 62 | fexd 5746 |
. . 3
β’ (π β πΉ β V) |
64 | | basendxnn 12517 |
. . . . 5
β’
(Baseβndx) β β |
65 | | focdmex 6115 |
. . . . . 6
β’ (π β V β (πΉ:πβontoβπ΅ β π΅ β V)) |
66 | 62, 12, 65 | sylc 62 |
. . . . 5
β’ (π β π΅ β V) |
67 | | opexg 4228 |
. . . . 5
β’
(((Baseβndx) β β β§ π΅ β V) β β¨(Baseβndx),
π΅β© β
V) |
68 | 64, 66, 67 | sylancr 414 |
. . . 4
β’ (π β β¨(Baseβndx),
π΅β© β
V) |
69 | | plusgndxnn 12569 |
. . . . 5
β’
(+gβndx) β β |
70 | 63 | ad2antrr 488 |
. . . . . . . . . . . . . 14
β’ (((π β§ π β π) β§ π β π) β πΉ β V) |
71 | | vex 2740 |
. . . . . . . . . . . . . . 15
β’ π β V |
72 | 71 | a1i 9 |
. . . . . . . . . . . . . 14
β’ (((π β§ π β π) β§ π β π) β π β V) |
73 | | fvexg 5534 |
. . . . . . . . . . . . . 14
β’ ((πΉ β V β§ π β V) β (πΉβπ) β V) |
74 | 70, 72, 73 | syl2anc 411 |
. . . . . . . . . . . . 13
β’ (((π β§ π β π) β§ π β π) β (πΉβπ) β V) |
75 | | vex 2740 |
. . . . . . . . . . . . . . 15
β’ π β V |
76 | 75 | a1i 9 |
. . . . . . . . . . . . . 14
β’ (((π β§ π β π) β§ π β π) β π β V) |
77 | | fvexg 5534 |
. . . . . . . . . . . . . 14
β’ ((πΉ β V β§ π β V) β (πΉβπ) β V) |
78 | 70, 76, 77 | syl2anc 411 |
. . . . . . . . . . . . 13
β’ (((π β§ π β π) β§ π β π) β (πΉβπ) β V) |
79 | | opexg 4228 |
. . . . . . . . . . . . 13
β’ (((πΉβπ) β V β§ (πΉβπ) β V) β β¨(πΉβπ), (πΉβπ)β© β V) |
80 | 74, 78, 79 | syl2anc 411 |
. . . . . . . . . . . 12
β’ (((π β§ π β π) β§ π β π) β β¨(πΉβπ), (πΉβπ)β© β V) |
81 | | plusgslid 12570 |
. . . . . . . . . . . . . . . . . 18
β’
(+g = Slot (+gβndx) β§
(+gβndx) β β) |
82 | 81 | slotex 12488 |
. . . . . . . . . . . . . . . . 17
β’ (π
β π β (+gβπ
) β V) |
83 | 57, 82 | syl 14 |
. . . . . . . . . . . . . . . 16
β’ (π β (+gβπ
) β V) |
84 | 28, 83 | eqeltrid 2264 |
. . . . . . . . . . . . . . 15
β’ (π β + β V) |
85 | 84 | ad2antrr 488 |
. . . . . . . . . . . . . 14
β’ (((π β§ π β π) β§ π β π) β + β V) |
86 | | ovexg 5908 |
. . . . . . . . . . . . . 14
β’ ((π β V β§ + β V
β§ π β V) β
(π + π) β V) |
87 | 72, 85, 76, 86 | syl3anc 1238 |
. . . . . . . . . . . . 13
β’ (((π β§ π β π) β§ π β π) β (π + π) β V) |
88 | | fvexg 5534 |
. . . . . . . . . . . . 13
β’ ((πΉ β V β§ (π + π) β V) β (πΉβ(π + π)) β V) |
89 | 70, 87, 88 | syl2anc 411 |
. . . . . . . . . . . 12
β’ (((π β§ π β π) β§ π β π) β (πΉβ(π + π)) β V) |
90 | | opexg 4228 |
. . . . . . . . . . . 12
β’
((β¨(πΉβπ), (πΉβπ)β© β V β§ (πΉβ(π + π)) β V) β β¨β¨(πΉβπ), (πΉβπ)β©, (πΉβ(π + π))β© β V) |
91 | 80, 89, 90 | syl2anc 411 |
. . . . . . . . . . 11
β’ (((π β§ π β π) β§ π β π) β β¨β¨(πΉβπ), (πΉβπ)β©, (πΉβ(π + π))β© β V) |
92 | | snexg 4184 |
. . . . . . . . . . 11
β’
(β¨β¨(πΉβπ), (πΉβπ)β©, (πΉβ(π + π))β© β V β {β¨β¨(πΉβπ), (πΉβπ)β©, (πΉβ(π + π))β©} β V) |
93 | 91, 92 | syl 14 |
. . . . . . . . . 10
β’ (((π β§ π β π) β§ π β π) β {β¨β¨(πΉβπ), (πΉβπ)β©, (πΉβ(π + π))β©} β V) |
94 | 93 | ralrimiva 2550 |
. . . . . . . . 9
β’ ((π β§ π β π) β βπ β π {β¨β¨(πΉβπ), (πΉβπ)β©, (πΉβ(π + π))β©} β V) |
95 | | iunexg 6119 |
. . . . . . . . 9
β’ ((π β V β§ βπ β π {β¨β¨(πΉβπ), (πΉβπ)β©, (πΉβ(π + π))β©} β V) β βͺ π β π {β¨β¨(πΉβπ), (πΉβπ)β©, (πΉβ(π + π))β©} β V) |
96 | 62, 94, 95 | syl2an2r 595 |
. . . . . . . 8
β’ ((π β§ π β π) β βͺ
π β π {β¨β¨(πΉβπ), (πΉβπ)β©, (πΉβ(π + π))β©} β V) |
97 | 96 | ralrimiva 2550 |
. . . . . . 7
β’ (π β βπ β π βͺ π β π {β¨β¨(πΉβπ), (πΉβπ)β©, (πΉβ(π + π))β©} β V) |
98 | | iunexg 6119 |
. . . . . . 7
β’ ((π β V β§ βπ β π βͺ π β π {β¨β¨(πΉβπ), (πΉβπ)β©, (πΉβ(π + π))β©} β V) β βͺ π β π βͺ π β π {β¨β¨(πΉβπ), (πΉβπ)β©, (πΉβ(π + π))β©} β V) |
99 | 62, 97, 98 | syl2anc 411 |
. . . . . 6
β’ (π β βͺ π β π βͺ π β π {β¨β¨(πΉβπ), (πΉβπ)β©, (πΉβ(π + π))β©} β V) |
100 | 36, 99 | eqeltrd 2254 |
. . . . 5
β’ (π β β β
V) |
101 | | opexg 4228 |
. . . . 5
β’
(((+gβndx) β β β§ β β V) β
β¨(+gβndx), β β© β
V) |
102 | 69, 100, 101 | sylancr 414 |
. . . 4
β’ (π β
β¨(+gβndx), β β© β
V) |
103 | | mulrslid 12589 |
. . . . . 6
β’
(.r = Slot (.rβndx) β§
(.rβndx) β β) |
104 | 103 | simpri 113 |
. . . . 5
β’
(.rβndx) β β |
105 | 103 | slotex 12488 |
. . . . . . . . . . . . . . . . 17
β’ (π
β π β (.rβπ
) β V) |
106 | 57, 105 | syl 14 |
. . . . . . . . . . . . . . . 16
β’ (π β (.rβπ
) β V) |
107 | 41, 106 | eqeltrid 2264 |
. . . . . . . . . . . . . . 15
β’ (π β Γ β
V) |
108 | 107 | ad2antrr 488 |
. . . . . . . . . . . . . 14
β’ (((π β§ π β π) β§ π β π) β Γ β
V) |
109 | | ovexg 5908 |
. . . . . . . . . . . . . 14
β’ ((π β V β§ Γ β
V β§ π β V) β
(π Γ π) β V) |
110 | 72, 108, 76, 109 | syl3anc 1238 |
. . . . . . . . . . . . 13
β’ (((π β§ π β π) β§ π β π) β (π Γ π) β V) |
111 | | fvexg 5534 |
. . . . . . . . . . . . 13
β’ ((πΉ β V β§ (π Γ π) β V) β (πΉβ(π Γ π)) β V) |
112 | 70, 110, 111 | syl2anc 411 |
. . . . . . . . . . . 12
β’ (((π β§ π β π) β§ π β π) β (πΉβ(π Γ π)) β V) |
113 | | opexg 4228 |
. . . . . . . . . . . 12
β’
((β¨(πΉβπ), (πΉβπ)β© β V β§ (πΉβ(π Γ π)) β V) β β¨β¨(πΉβπ), (πΉβπ)β©, (πΉβ(π Γ π))β© β V) |
114 | 80, 112, 113 | syl2anc 411 |
. . . . . . . . . . 11
β’ (((π β§ π β π) β§ π β π) β β¨β¨(πΉβπ), (πΉβπ)β©, (πΉβ(π Γ π))β© β V) |
115 | | snexg 4184 |
. . . . . . . . . . 11
β’
(β¨β¨(πΉβπ), (πΉβπ)β©, (πΉβ(π Γ π))β© β V β {β¨β¨(πΉβπ), (πΉβπ)β©, (πΉβ(π Γ π))β©} β V) |
116 | 114, 115 | syl 14 |
. . . . . . . . . 10
β’ (((π β§ π β π) β§ π β π) β {β¨β¨(πΉβπ), (πΉβπ)β©, (πΉβ(π Γ π))β©} β V) |
117 | 116 | ralrimiva 2550 |
. . . . . . . . 9
β’ ((π β§ π β π) β βπ β π {β¨β¨(πΉβπ), (πΉβπ)β©, (πΉβ(π Γ π))β©} β V) |
118 | | iunexg 6119 |
. . . . . . . . 9
β’ ((π β V β§ βπ β π {β¨β¨(πΉβπ), (πΉβπ)β©, (πΉβ(π Γ π))β©} β V) β βͺ π β π {β¨β¨(πΉβπ), (πΉβπ)β©, (πΉβ(π Γ π))β©} β V) |
119 | 62, 117, 118 | syl2an2r 595 |
. . . . . . . 8
β’ ((π β§ π β π) β βͺ
π β π {β¨β¨(πΉβπ), (πΉβπ)β©, (πΉβ(π Γ π))β©} β V) |
120 | 119 | ralrimiva 2550 |
. . . . . . 7
β’ (π β βπ β π βͺ π β π {β¨β¨(πΉβπ), (πΉβπ)β©, (πΉβ(π Γ π))β©} β V) |
121 | | iunexg 6119 |
. . . . . . 7
β’ ((π β V β§ βπ β π βͺ π β π {β¨β¨(πΉβπ), (πΉβπ)β©, (πΉβ(π Γ π))β©} β V) β βͺ π β π βͺ π β π {β¨β¨(πΉβπ), (πΉβπ)β©, (πΉβ(π Γ π))β©} β V) |
122 | 62, 120, 121 | syl2anc 411 |
. . . . . 6
β’ (π β βͺ π β π βͺ π β π {β¨β¨(πΉβπ), (πΉβπ)β©, (πΉβ(π Γ π))β©} β V) |
123 | 49, 122 | eqeltrd 2254 |
. . . . 5
β’ (π β β β
V) |
124 | | opexg 4228 |
. . . . 5
β’
(((.rβndx) β β β§ β β V) β
β¨(.rβndx), β β© β
V) |
125 | 104, 123,
124 | sylancr 414 |
. . . 4
β’ (π β
β¨(.rβndx), β β© β
V) |
126 | | tpexg 4444 |
. . . 4
β’
((β¨(Baseβndx), π΅β© β V β§
β¨(+gβndx), β β© β V
β§ β¨(.rβndx), β β© β V)
β {β¨(Baseβndx), π΅β©, β¨(+gβndx),
β
β©, β¨(.rβndx), β β©} β
V) |
127 | 68, 102, 125, 126 | syl3anc 1238 |
. . 3
β’ (π β {β¨(Baseβndx),
π΅β©,
β¨(+gβndx), β β©,
β¨(.rβndx), β β©} β
V) |
128 | 3, 54, 63, 58, 127 | ovmpod 6001 |
. 2
β’ (π β (πΉ βs π
) = {β¨(Baseβndx),
π΅β©,
β¨(+gβndx), β β©,
β¨(.rβndx), β
β©}) |
129 | 1, 128 | eqtrd 2210 |
1
β’ (π β π = {β¨(Baseβndx), π΅β©,
β¨(+gβndx), β β©,
β¨(.rβndx), β
β©}) |