ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imasival GIF version

Theorem imasival 13334
Description: Value of an image structure. The is a lemma for the theorems imasbas 13335, imasplusg 13336, and imasmulr 13337 and should not be needed once they are proved. (Contributed by Mario Carneiro, 23-Feb-2015.) (Revised by Jim Kingdon, 11-Mar-2025.) (New usage is discouraged.)
Hypotheses
Ref Expression
imasval.u (𝜑𝑈 = (𝐹s 𝑅))
imasval.v (𝜑𝑉 = (Base‘𝑅))
imasval.p + = (+g𝑅)
imasval.m × = (.r𝑅)
imasval.q · = ( ·𝑠𝑅)
imasval.a (𝜑 = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩})
imasval.t (𝜑 = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩})
imasval.f (𝜑𝐹:𝑉onto𝐵)
imasval.r (𝜑𝑅𝑍)
Assertion
Ref Expression
imasival (𝜑𝑈 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), ⟩})
Distinct variable groups:   𝐹,𝑝,𝑞   𝑅,𝑝,𝑞   𝑉,𝑝,𝑞   𝜑,𝑝,𝑞
Allowed substitution hints:   𝐵(𝑞,𝑝)   + (𝑞,𝑝)   (𝑞,𝑝)   (𝑞,𝑝)   · (𝑞,𝑝)   × (𝑞,𝑝)   𝑈(𝑞,𝑝)   𝑍(𝑞,𝑝)

Proof of Theorem imasival
Dummy variables 𝑓 𝑟 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasval.u . 2 (𝜑𝑈 = (𝐹s 𝑅))
2 df-iimas 13330 . . . 4 s = (𝑓 ∈ V, 𝑟 ∈ V ↦ (Base‘𝑟) / 𝑣{⟨(Base‘ndx), ran 𝑓⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩}⟩})
32a1i 9 . . 3 (𝜑 → “s = (𝑓 ∈ V, 𝑟 ∈ V ↦ (Base‘𝑟) / 𝑣{⟨(Base‘ndx), ran 𝑓⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩}⟩}))
4 basfn 13086 . . . . . 6 Base Fn V
5 vex 2802 . . . . . 6 𝑟 ∈ V
6 funfvex 5643 . . . . . . 7 ((Fun Base ∧ 𝑟 ∈ dom Base) → (Base‘𝑟) ∈ V)
76funfni 5422 . . . . . 6 ((Base Fn V ∧ 𝑟 ∈ V) → (Base‘𝑟) ∈ V)
84, 5, 7mp2an 426 . . . . 5 (Base‘𝑟) ∈ V
98a1i 9 . . . 4 ((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) → (Base‘𝑟) ∈ V)
10 simplrl 535 . . . . . . . 8 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 𝑓 = 𝐹)
1110rneqd 4952 . . . . . . 7 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ran 𝑓 = ran 𝐹)
12 imasval.f . . . . . . . . 9 (𝜑𝐹:𝑉onto𝐵)
13 forn 5550 . . . . . . . . 9 (𝐹:𝑉onto𝐵 → ran 𝐹 = 𝐵)
1412, 13syl 14 . . . . . . . 8 (𝜑 → ran 𝐹 = 𝐵)
1514ad2antrr 488 . . . . . . 7 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ran 𝐹 = 𝐵)
1611, 15eqtrd 2262 . . . . . 6 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ran 𝑓 = 𝐵)
1716opeq2d 3863 . . . . 5 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ⟨(Base‘ndx), ran 𝑓⟩ = ⟨(Base‘ndx), 𝐵⟩)
18 simplrr 536 . . . . . . . . . 10 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 𝑟 = 𝑅)
1918fveq2d 5630 . . . . . . . . 9 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (Base‘𝑟) = (Base‘𝑅))
20 simpr 110 . . . . . . . . 9 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 𝑣 = (Base‘𝑟))
21 imasval.v . . . . . . . . . 10 (𝜑𝑉 = (Base‘𝑅))
2221ad2antrr 488 . . . . . . . . 9 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 𝑉 = (Base‘𝑅))
2319, 20, 223eqtr4d 2272 . . . . . . . 8 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 𝑣 = 𝑉)
2410fveq1d 5628 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (𝑓𝑝) = (𝐹𝑝))
2510fveq1d 5628 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (𝑓𝑞) = (𝐹𝑞))
2624, 25opeq12d 3864 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ⟨(𝑓𝑝), (𝑓𝑞)⟩ = ⟨(𝐹𝑝), (𝐹𝑞)⟩)
2718fveq2d 5630 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (+g𝑟) = (+g𝑅))
28 imasval.p . . . . . . . . . . . . . 14 + = (+g𝑅)
2927, 28eqtr4di 2280 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (+g𝑟) = + )
3029oveqd 6017 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (𝑝(+g𝑟)𝑞) = (𝑝 + 𝑞))
3110, 30fveq12d 5633 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (𝑓‘(𝑝(+g𝑟)𝑞)) = (𝐹‘(𝑝 + 𝑞)))
3226, 31opeq12d 3864 . . . . . . . . . 10 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩ = ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩)
3332sneqd 3679 . . . . . . . . 9 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩} = {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩})
3423, 33iuneq12d 3988 . . . . . . . 8 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩} = 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩})
3523, 34iuneq12d 3988 . . . . . . 7 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩} = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩})
36 imasval.a . . . . . . . 8 (𝜑 = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩})
3736ad2antrr 488 . . . . . . 7 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩})
3835, 37eqtr4d 2265 . . . . . 6 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩} = )
3938opeq2d 3863 . . . . 5 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩}⟩ = ⟨(+g‘ndx), ⟩)
4018fveq2d 5630 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (.r𝑟) = (.r𝑅))
41 imasval.m . . . . . . . . . . . . . 14 × = (.r𝑅)
4240, 41eqtr4di 2280 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (.r𝑟) = × )
4342oveqd 6017 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (𝑝(.r𝑟)𝑞) = (𝑝 × 𝑞))
4410, 43fveq12d 5633 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (𝑓‘(𝑝(.r𝑟)𝑞)) = (𝐹‘(𝑝 × 𝑞)))
4526, 44opeq12d 3864 . . . . . . . . . 10 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩ = ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩)
4645sneqd 3679 . . . . . . . . 9 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩} = {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩})
4723, 46iuneq12d 3988 . . . . . . . 8 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩} = 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩})
4823, 47iuneq12d 3988 . . . . . . 7 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩} = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩})
49 imasval.t . . . . . . . 8 (𝜑 = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩})
5049ad2antrr 488 . . . . . . 7 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩})
5148, 50eqtr4d 2265 . . . . . 6 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩} = )
5251opeq2d 3863 . . . . 5 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩}⟩ = ⟨(.r‘ndx), ⟩)
5317, 39, 52tpeq123d 3758 . . . 4 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → {⟨(Base‘ndx), ran 𝑓⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩}⟩} = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), ⟩})
549, 53csbied 3171 . . 3 ((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) → (Base‘𝑟) / 𝑣{⟨(Base‘ndx), ran 𝑓⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩}⟩} = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), ⟩})
55 fof 5547 . . . . 5 (𝐹:𝑉onto𝐵𝐹:𝑉𝐵)
5612, 55syl 14 . . . 4 (𝜑𝐹:𝑉𝐵)
57 imasval.r . . . . . . 7 (𝜑𝑅𝑍)
5857elexd 2813 . . . . . 6 (𝜑𝑅 ∈ V)
59 funfvex 5643 . . . . . . 7 ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V)
6059funfni 5422 . . . . . 6 ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V)
614, 58, 60sylancr 414 . . . . 5 (𝜑 → (Base‘𝑅) ∈ V)
6221, 61eqeltrd 2306 . . . 4 (𝜑𝑉 ∈ V)
6356, 62fexd 5868 . . 3 (𝜑𝐹 ∈ V)
64 basendxnn 13083 . . . . 5 (Base‘ndx) ∈ ℕ
65 focdmex 6258 . . . . . 6 (𝑉 ∈ V → (𝐹:𝑉onto𝐵𝐵 ∈ V))
6662, 12, 65sylc 62 . . . . 5 (𝜑𝐵 ∈ V)
67 opexg 4313 . . . . 5 (((Base‘ndx) ∈ ℕ ∧ 𝐵 ∈ V) → ⟨(Base‘ndx), 𝐵⟩ ∈ V)
6864, 66, 67sylancr 414 . . . 4 (𝜑 → ⟨(Base‘ndx), 𝐵⟩ ∈ V)
69 plusgndxnn 13139 . . . . 5 (+g‘ndx) ∈ ℕ
7063ad2antrr 488 . . . . . . . . . . . . . 14 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → 𝐹 ∈ V)
71 vex 2802 . . . . . . . . . . . . . . 15 𝑝 ∈ V
7271a1i 9 . . . . . . . . . . . . . 14 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → 𝑝 ∈ V)
73 fvexg 5645 . . . . . . . . . . . . . 14 ((𝐹 ∈ V ∧ 𝑝 ∈ V) → (𝐹𝑝) ∈ V)
7470, 72, 73syl2anc 411 . . . . . . . . . . . . 13 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → (𝐹𝑝) ∈ V)
75 vex 2802 . . . . . . . . . . . . . . 15 𝑞 ∈ V
7675a1i 9 . . . . . . . . . . . . . 14 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → 𝑞 ∈ V)
77 fvexg 5645 . . . . . . . . . . . . . 14 ((𝐹 ∈ V ∧ 𝑞 ∈ V) → (𝐹𝑞) ∈ V)
7870, 76, 77syl2anc 411 . . . . . . . . . . . . 13 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → (𝐹𝑞) ∈ V)
79 opexg 4313 . . . . . . . . . . . . 13 (((𝐹𝑝) ∈ V ∧ (𝐹𝑞) ∈ V) → ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ V)
8074, 78, 79syl2anc 411 . . . . . . . . . . . 12 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ V)
81 plusgslid 13140 . . . . . . . . . . . . . . . . . 18 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
8281slotex 13054 . . . . . . . . . . . . . . . . 17 (𝑅𝑍 → (+g𝑅) ∈ V)
8357, 82syl 14 . . . . . . . . . . . . . . . 16 (𝜑 → (+g𝑅) ∈ V)
8428, 83eqeltrid 2316 . . . . . . . . . . . . . . 15 (𝜑+ ∈ V)
8584ad2antrr 488 . . . . . . . . . . . . . 14 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → + ∈ V)
86 ovexg 6034 . . . . . . . . . . . . . 14 ((𝑝 ∈ V ∧ + ∈ V ∧ 𝑞 ∈ V) → (𝑝 + 𝑞) ∈ V)
8772, 85, 76, 86syl3anc 1271 . . . . . . . . . . . . 13 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → (𝑝 + 𝑞) ∈ V)
88 fvexg 5645 . . . . . . . . . . . . 13 ((𝐹 ∈ V ∧ (𝑝 + 𝑞) ∈ V) → (𝐹‘(𝑝 + 𝑞)) ∈ V)
8970, 87, 88syl2anc 411 . . . . . . . . . . . 12 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → (𝐹‘(𝑝 + 𝑞)) ∈ V)
90 opexg 4313 . . . . . . . . . . . 12 ((⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ V ∧ (𝐹‘(𝑝 + 𝑞)) ∈ V) → ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩ ∈ V)
9180, 89, 90syl2anc 411 . . . . . . . . . . 11 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩ ∈ V)
92 snexg 4267 . . . . . . . . . . 11 (⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩ ∈ V → {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩} ∈ V)
9391, 92syl 14 . . . . . . . . . 10 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩} ∈ V)
9493ralrimiva 2603 . . . . . . . . 9 ((𝜑𝑝𝑉) → ∀𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩} ∈ V)
95 iunexg 6262 . . . . . . . . 9 ((𝑉 ∈ V ∧ ∀𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩} ∈ V) → 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩} ∈ V)
9662, 94, 95syl2an2r 597 . . . . . . . 8 ((𝜑𝑝𝑉) → 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩} ∈ V)
9796ralrimiva 2603 . . . . . . 7 (𝜑 → ∀𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩} ∈ V)
98 iunexg 6262 . . . . . . 7 ((𝑉 ∈ V ∧ ∀𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩} ∈ V) → 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩} ∈ V)
9962, 97, 98syl2anc 411 . . . . . 6 (𝜑 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩} ∈ V)
10036, 99eqeltrd 2306 . . . . 5 (𝜑 ∈ V)
101 opexg 4313 . . . . 5 (((+g‘ndx) ∈ ℕ ∧ ∈ V) → ⟨(+g‘ndx), ⟩ ∈ V)
10269, 100, 101sylancr 414 . . . 4 (𝜑 → ⟨(+g‘ndx), ⟩ ∈ V)
103 mulrslid 13160 . . . . . 6 (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ)
104103simpri 113 . . . . 5 (.r‘ndx) ∈ ℕ
105103slotex 13054 . . . . . . . . . . . . . . . . 17 (𝑅𝑍 → (.r𝑅) ∈ V)
10657, 105syl 14 . . . . . . . . . . . . . . . 16 (𝜑 → (.r𝑅) ∈ V)
10741, 106eqeltrid 2316 . . . . . . . . . . . . . . 15 (𝜑× ∈ V)
108107ad2antrr 488 . . . . . . . . . . . . . 14 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → × ∈ V)
109 ovexg 6034 . . . . . . . . . . . . . 14 ((𝑝 ∈ V ∧ × ∈ V ∧ 𝑞 ∈ V) → (𝑝 × 𝑞) ∈ V)
11072, 108, 76, 109syl3anc 1271 . . . . . . . . . . . . 13 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → (𝑝 × 𝑞) ∈ V)
111 fvexg 5645 . . . . . . . . . . . . 13 ((𝐹 ∈ V ∧ (𝑝 × 𝑞) ∈ V) → (𝐹‘(𝑝 × 𝑞)) ∈ V)
11270, 110, 111syl2anc 411 . . . . . . . . . . . 12 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → (𝐹‘(𝑝 × 𝑞)) ∈ V)
113 opexg 4313 . . . . . . . . . . . 12 ((⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ V ∧ (𝐹‘(𝑝 × 𝑞)) ∈ V) → ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩ ∈ V)
11480, 112, 113syl2anc 411 . . . . . . . . . . 11 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩ ∈ V)
115 snexg 4267 . . . . . . . . . . 11 (⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩ ∈ V → {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩} ∈ V)
116114, 115syl 14 . . . . . . . . . 10 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩} ∈ V)
117116ralrimiva 2603 . . . . . . . . 9 ((𝜑𝑝𝑉) → ∀𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩} ∈ V)
118 iunexg 6262 . . . . . . . . 9 ((𝑉 ∈ V ∧ ∀𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩} ∈ V) → 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩} ∈ V)
11962, 117, 118syl2an2r 597 . . . . . . . 8 ((𝜑𝑝𝑉) → 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩} ∈ V)
120119ralrimiva 2603 . . . . . . 7 (𝜑 → ∀𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩} ∈ V)
121 iunexg 6262 . . . . . . 7 ((𝑉 ∈ V ∧ ∀𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩} ∈ V) → 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩} ∈ V)
12262, 120, 121syl2anc 411 . . . . . 6 (𝜑 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩} ∈ V)
12349, 122eqeltrd 2306 . . . . 5 (𝜑 ∈ V)
124 opexg 4313 . . . . 5 (((.r‘ndx) ∈ ℕ ∧ ∈ V) → ⟨(.r‘ndx), ⟩ ∈ V)
125104, 123, 124sylancr 414 . . . 4 (𝜑 → ⟨(.r‘ndx), ⟩ ∈ V)
126 tpexg 4534 . . . 4 ((⟨(Base‘ndx), 𝐵⟩ ∈ V ∧ ⟨(+g‘ndx), ⟩ ∈ V ∧ ⟨(.r‘ndx), ⟩ ∈ V) → {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), ⟩} ∈ V)
12768, 102, 125, 126syl3anc 1271 . . 3 (𝜑 → {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), ⟩} ∈ V)
1283, 54, 63, 58, 127ovmpod 6131 . 2 (𝜑 → (𝐹s 𝑅) = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), ⟩})
1291, 128eqtrd 2262 1 (𝜑𝑈 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), ⟩})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  wral 2508  Vcvv 2799  csb 3124  {csn 3666  {ctp 3668  cop 3669   ciun 3964  ran crn 4719   Fn wfn 5312  wf 5313  ontowfo 5315  cfv 5317  (class class class)co 6000  cmpo 6002  cn 9106  ndxcnx 13024  Slot cslot 13026  Basecbs 13027  +gcplusg 13105  .rcmulr 13106   ·𝑠 cvsca 13109  s cimas 13327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1re 8089  ax-addrcl 8092
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-tp 3674  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-inn 9107  df-2 9165  df-3 9166  df-ndx 13030  df-slot 13031  df-base 13033  df-plusg 13118  df-mulr 13119  df-iimas 13330
This theorem is referenced by:  imasbas  13335  imasplusg  13336  imasmulr  13337
  Copyright terms: Public domain W3C validator