ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imasival GIF version

Theorem imasival 13010
Description: Value of an image structure. The is a lemma for the theorems imasbas 13011, imasplusg 13012, and imasmulr 13013 and should not be needed once they are proved. (Contributed by Mario Carneiro, 23-Feb-2015.) (Revised by Jim Kingdon, 11-Mar-2025.) (New usage is discouraged.)
Hypotheses
Ref Expression
imasval.u (𝜑𝑈 = (𝐹s 𝑅))
imasval.v (𝜑𝑉 = (Base‘𝑅))
imasval.p + = (+g𝑅)
imasval.m × = (.r𝑅)
imasval.q · = ( ·𝑠𝑅)
imasval.a (𝜑 = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩})
imasval.t (𝜑 = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩})
imasval.f (𝜑𝐹:𝑉onto𝐵)
imasval.r (𝜑𝑅𝑍)
Assertion
Ref Expression
imasival (𝜑𝑈 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), ⟩})
Distinct variable groups:   𝐹,𝑝,𝑞   𝑅,𝑝,𝑞   𝑉,𝑝,𝑞   𝜑,𝑝,𝑞
Allowed substitution hints:   𝐵(𝑞,𝑝)   + (𝑞,𝑝)   (𝑞,𝑝)   (𝑞,𝑝)   · (𝑞,𝑝)   × (𝑞,𝑝)   𝑈(𝑞,𝑝)   𝑍(𝑞,𝑝)

Proof of Theorem imasival
Dummy variables 𝑓 𝑟 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasval.u . 2 (𝜑𝑈 = (𝐹s 𝑅))
2 df-iimas 13006 . . . 4 s = (𝑓 ∈ V, 𝑟 ∈ V ↦ (Base‘𝑟) / 𝑣{⟨(Base‘ndx), ran 𝑓⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩}⟩})
32a1i 9 . . 3 (𝜑 → “s = (𝑓 ∈ V, 𝑟 ∈ V ↦ (Base‘𝑟) / 𝑣{⟨(Base‘ndx), ran 𝑓⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩}⟩}))
4 basfn 12763 . . . . . 6 Base Fn V
5 vex 2766 . . . . . 6 𝑟 ∈ V
6 funfvex 5578 . . . . . . 7 ((Fun Base ∧ 𝑟 ∈ dom Base) → (Base‘𝑟) ∈ V)
76funfni 5361 . . . . . 6 ((Base Fn V ∧ 𝑟 ∈ V) → (Base‘𝑟) ∈ V)
84, 5, 7mp2an 426 . . . . 5 (Base‘𝑟) ∈ V
98a1i 9 . . . 4 ((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) → (Base‘𝑟) ∈ V)
10 simplrl 535 . . . . . . . 8 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 𝑓 = 𝐹)
1110rneqd 4896 . . . . . . 7 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ran 𝑓 = ran 𝐹)
12 imasval.f . . . . . . . . 9 (𝜑𝐹:𝑉onto𝐵)
13 forn 5486 . . . . . . . . 9 (𝐹:𝑉onto𝐵 → ran 𝐹 = 𝐵)
1412, 13syl 14 . . . . . . . 8 (𝜑 → ran 𝐹 = 𝐵)
1514ad2antrr 488 . . . . . . 7 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ran 𝐹 = 𝐵)
1611, 15eqtrd 2229 . . . . . 6 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ran 𝑓 = 𝐵)
1716opeq2d 3816 . . . . 5 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ⟨(Base‘ndx), ran 𝑓⟩ = ⟨(Base‘ndx), 𝐵⟩)
18 simplrr 536 . . . . . . . . . 10 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 𝑟 = 𝑅)
1918fveq2d 5565 . . . . . . . . 9 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (Base‘𝑟) = (Base‘𝑅))
20 simpr 110 . . . . . . . . 9 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 𝑣 = (Base‘𝑟))
21 imasval.v . . . . . . . . . 10 (𝜑𝑉 = (Base‘𝑅))
2221ad2antrr 488 . . . . . . . . 9 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 𝑉 = (Base‘𝑅))
2319, 20, 223eqtr4d 2239 . . . . . . . 8 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 𝑣 = 𝑉)
2410fveq1d 5563 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (𝑓𝑝) = (𝐹𝑝))
2510fveq1d 5563 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (𝑓𝑞) = (𝐹𝑞))
2624, 25opeq12d 3817 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ⟨(𝑓𝑝), (𝑓𝑞)⟩ = ⟨(𝐹𝑝), (𝐹𝑞)⟩)
2718fveq2d 5565 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (+g𝑟) = (+g𝑅))
28 imasval.p . . . . . . . . . . . . . 14 + = (+g𝑅)
2927, 28eqtr4di 2247 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (+g𝑟) = + )
3029oveqd 5942 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (𝑝(+g𝑟)𝑞) = (𝑝 + 𝑞))
3110, 30fveq12d 5568 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (𝑓‘(𝑝(+g𝑟)𝑞)) = (𝐹‘(𝑝 + 𝑞)))
3226, 31opeq12d 3817 . . . . . . . . . 10 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩ = ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩)
3332sneqd 3636 . . . . . . . . 9 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩} = {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩})
3423, 33iuneq12d 3941 . . . . . . . 8 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩} = 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩})
3523, 34iuneq12d 3941 . . . . . . 7 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩} = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩})
36 imasval.a . . . . . . . 8 (𝜑 = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩})
3736ad2antrr 488 . . . . . . 7 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩})
3835, 37eqtr4d 2232 . . . . . 6 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩} = )
3938opeq2d 3816 . . . . 5 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩}⟩ = ⟨(+g‘ndx), ⟩)
4018fveq2d 5565 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (.r𝑟) = (.r𝑅))
41 imasval.m . . . . . . . . . . . . . 14 × = (.r𝑅)
4240, 41eqtr4di 2247 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (.r𝑟) = × )
4342oveqd 5942 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (𝑝(.r𝑟)𝑞) = (𝑝 × 𝑞))
4410, 43fveq12d 5568 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (𝑓‘(𝑝(.r𝑟)𝑞)) = (𝐹‘(𝑝 × 𝑞)))
4526, 44opeq12d 3817 . . . . . . . . . 10 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩ = ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩)
4645sneqd 3636 . . . . . . . . 9 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩} = {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩})
4723, 46iuneq12d 3941 . . . . . . . 8 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩} = 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩})
4823, 47iuneq12d 3941 . . . . . . 7 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩} = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩})
49 imasval.t . . . . . . . 8 (𝜑 = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩})
5049ad2antrr 488 . . . . . . 7 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩})
5148, 50eqtr4d 2232 . . . . . 6 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩} = )
5251opeq2d 3816 . . . . 5 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩}⟩ = ⟨(.r‘ndx), ⟩)
5317, 39, 52tpeq123d 3715 . . . 4 (((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → {⟨(Base‘ndx), ran 𝑓⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩}⟩} = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), ⟩})
549, 53csbied 3131 . . 3 ((𝜑 ∧ (𝑓 = 𝐹𝑟 = 𝑅)) → (Base‘𝑟) / 𝑣{⟨(Base‘ndx), ran 𝑓⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩}⟩} = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), ⟩})
55 fof 5483 . . . . 5 (𝐹:𝑉onto𝐵𝐹:𝑉𝐵)
5612, 55syl 14 . . . 4 (𝜑𝐹:𝑉𝐵)
57 imasval.r . . . . . . 7 (𝜑𝑅𝑍)
5857elexd 2776 . . . . . 6 (𝜑𝑅 ∈ V)
59 funfvex 5578 . . . . . . 7 ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V)
6059funfni 5361 . . . . . 6 ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V)
614, 58, 60sylancr 414 . . . . 5 (𝜑 → (Base‘𝑅) ∈ V)
6221, 61eqeltrd 2273 . . . 4 (𝜑𝑉 ∈ V)
6356, 62fexd 5795 . . 3 (𝜑𝐹 ∈ V)
64 basendxnn 12761 . . . . 5 (Base‘ndx) ∈ ℕ
65 focdmex 6181 . . . . . 6 (𝑉 ∈ V → (𝐹:𝑉onto𝐵𝐵 ∈ V))
6662, 12, 65sylc 62 . . . . 5 (𝜑𝐵 ∈ V)
67 opexg 4262 . . . . 5 (((Base‘ndx) ∈ ℕ ∧ 𝐵 ∈ V) → ⟨(Base‘ndx), 𝐵⟩ ∈ V)
6864, 66, 67sylancr 414 . . . 4 (𝜑 → ⟨(Base‘ndx), 𝐵⟩ ∈ V)
69 plusgndxnn 12816 . . . . 5 (+g‘ndx) ∈ ℕ
7063ad2antrr 488 . . . . . . . . . . . . . 14 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → 𝐹 ∈ V)
71 vex 2766 . . . . . . . . . . . . . . 15 𝑝 ∈ V
7271a1i 9 . . . . . . . . . . . . . 14 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → 𝑝 ∈ V)
73 fvexg 5580 . . . . . . . . . . . . . 14 ((𝐹 ∈ V ∧ 𝑝 ∈ V) → (𝐹𝑝) ∈ V)
7470, 72, 73syl2anc 411 . . . . . . . . . . . . 13 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → (𝐹𝑝) ∈ V)
75 vex 2766 . . . . . . . . . . . . . . 15 𝑞 ∈ V
7675a1i 9 . . . . . . . . . . . . . 14 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → 𝑞 ∈ V)
77 fvexg 5580 . . . . . . . . . . . . . 14 ((𝐹 ∈ V ∧ 𝑞 ∈ V) → (𝐹𝑞) ∈ V)
7870, 76, 77syl2anc 411 . . . . . . . . . . . . 13 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → (𝐹𝑞) ∈ V)
79 opexg 4262 . . . . . . . . . . . . 13 (((𝐹𝑝) ∈ V ∧ (𝐹𝑞) ∈ V) → ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ V)
8074, 78, 79syl2anc 411 . . . . . . . . . . . 12 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → ⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ V)
81 plusgslid 12817 . . . . . . . . . . . . . . . . . 18 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
8281slotex 12732 . . . . . . . . . . . . . . . . 17 (𝑅𝑍 → (+g𝑅) ∈ V)
8357, 82syl 14 . . . . . . . . . . . . . . . 16 (𝜑 → (+g𝑅) ∈ V)
8428, 83eqeltrid 2283 . . . . . . . . . . . . . . 15 (𝜑+ ∈ V)
8584ad2antrr 488 . . . . . . . . . . . . . 14 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → + ∈ V)
86 ovexg 5959 . . . . . . . . . . . . . 14 ((𝑝 ∈ V ∧ + ∈ V ∧ 𝑞 ∈ V) → (𝑝 + 𝑞) ∈ V)
8772, 85, 76, 86syl3anc 1249 . . . . . . . . . . . . 13 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → (𝑝 + 𝑞) ∈ V)
88 fvexg 5580 . . . . . . . . . . . . 13 ((𝐹 ∈ V ∧ (𝑝 + 𝑞) ∈ V) → (𝐹‘(𝑝 + 𝑞)) ∈ V)
8970, 87, 88syl2anc 411 . . . . . . . . . . . 12 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → (𝐹‘(𝑝 + 𝑞)) ∈ V)
90 opexg 4262 . . . . . . . . . . . 12 ((⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ V ∧ (𝐹‘(𝑝 + 𝑞)) ∈ V) → ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩ ∈ V)
9180, 89, 90syl2anc 411 . . . . . . . . . . 11 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩ ∈ V)
92 snexg 4218 . . . . . . . . . . 11 (⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩ ∈ V → {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩} ∈ V)
9391, 92syl 14 . . . . . . . . . 10 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩} ∈ V)
9493ralrimiva 2570 . . . . . . . . 9 ((𝜑𝑝𝑉) → ∀𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩} ∈ V)
95 iunexg 6185 . . . . . . . . 9 ((𝑉 ∈ V ∧ ∀𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩} ∈ V) → 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩} ∈ V)
9662, 94, 95syl2an2r 595 . . . . . . . 8 ((𝜑𝑝𝑉) → 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩} ∈ V)
9796ralrimiva 2570 . . . . . . 7 (𝜑 → ∀𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩} ∈ V)
98 iunexg 6185 . . . . . . 7 ((𝑉 ∈ V ∧ ∀𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩} ∈ V) → 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩} ∈ V)
9962, 97, 98syl2anc 411 . . . . . 6 (𝜑 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 + 𝑞))⟩} ∈ V)
10036, 99eqeltrd 2273 . . . . 5 (𝜑 ∈ V)
101 opexg 4262 . . . . 5 (((+g‘ndx) ∈ ℕ ∧ ∈ V) → ⟨(+g‘ndx), ⟩ ∈ V)
10269, 100, 101sylancr 414 . . . 4 (𝜑 → ⟨(+g‘ndx), ⟩ ∈ V)
103 mulrslid 12836 . . . . . 6 (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ)
104103simpri 113 . . . . 5 (.r‘ndx) ∈ ℕ
105103slotex 12732 . . . . . . . . . . . . . . . . 17 (𝑅𝑍 → (.r𝑅) ∈ V)
10657, 105syl 14 . . . . . . . . . . . . . . . 16 (𝜑 → (.r𝑅) ∈ V)
10741, 106eqeltrid 2283 . . . . . . . . . . . . . . 15 (𝜑× ∈ V)
108107ad2antrr 488 . . . . . . . . . . . . . 14 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → × ∈ V)
109 ovexg 5959 . . . . . . . . . . . . . 14 ((𝑝 ∈ V ∧ × ∈ V ∧ 𝑞 ∈ V) → (𝑝 × 𝑞) ∈ V)
11072, 108, 76, 109syl3anc 1249 . . . . . . . . . . . . 13 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → (𝑝 × 𝑞) ∈ V)
111 fvexg 5580 . . . . . . . . . . . . 13 ((𝐹 ∈ V ∧ (𝑝 × 𝑞) ∈ V) → (𝐹‘(𝑝 × 𝑞)) ∈ V)
11270, 110, 111syl2anc 411 . . . . . . . . . . . 12 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → (𝐹‘(𝑝 × 𝑞)) ∈ V)
113 opexg 4262 . . . . . . . . . . . 12 ((⟨(𝐹𝑝), (𝐹𝑞)⟩ ∈ V ∧ (𝐹‘(𝑝 × 𝑞)) ∈ V) → ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩ ∈ V)
11480, 112, 113syl2anc 411 . . . . . . . . . . 11 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → ⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩ ∈ V)
115 snexg 4218 . . . . . . . . . . 11 (⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩ ∈ V → {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩} ∈ V)
116114, 115syl 14 . . . . . . . . . 10 (((𝜑𝑝𝑉) ∧ 𝑞𝑉) → {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩} ∈ V)
117116ralrimiva 2570 . . . . . . . . 9 ((𝜑𝑝𝑉) → ∀𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩} ∈ V)
118 iunexg 6185 . . . . . . . . 9 ((𝑉 ∈ V ∧ ∀𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩} ∈ V) → 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩} ∈ V)
11962, 117, 118syl2an2r 595 . . . . . . . 8 ((𝜑𝑝𝑉) → 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩} ∈ V)
120119ralrimiva 2570 . . . . . . 7 (𝜑 → ∀𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩} ∈ V)
121 iunexg 6185 . . . . . . 7 ((𝑉 ∈ V ∧ ∀𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩} ∈ V) → 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩} ∈ V)
12262, 120, 121syl2anc 411 . . . . . 6 (𝜑 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 × 𝑞))⟩} ∈ V)
12349, 122eqeltrd 2273 . . . . 5 (𝜑 ∈ V)
124 opexg 4262 . . . . 5 (((.r‘ndx) ∈ ℕ ∧ ∈ V) → ⟨(.r‘ndx), ⟩ ∈ V)
125104, 123, 124sylancr 414 . . . 4 (𝜑 → ⟨(.r‘ndx), ⟩ ∈ V)
126 tpexg 4480 . . . 4 ((⟨(Base‘ndx), 𝐵⟩ ∈ V ∧ ⟨(+g‘ndx), ⟩ ∈ V ∧ ⟨(.r‘ndx), ⟩ ∈ V) → {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), ⟩} ∈ V)
12768, 102, 125, 126syl3anc 1249 . . 3 (𝜑 → {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), ⟩} ∈ V)
1283, 54, 63, 58, 127ovmpod 6054 . 2 (𝜑 → (𝐹s 𝑅) = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), ⟩})
1291, 128eqtrd 2229 1 (𝜑𝑈 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), ⟩})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  wral 2475  Vcvv 2763  csb 3084  {csn 3623  {ctp 3625  cop 3626   ciun 3917  ran crn 4665   Fn wfn 5254  wf 5255  ontowfo 5257  cfv 5259  (class class class)co 5925  cmpo 5927  cn 9009  ndxcnx 12702  Slot cslot 12704  Basecbs 12705  +gcplusg 12782  .rcmulr 12783   ·𝑠 cvsca 12786  s cimas 13003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7989  ax-resscn 7990  ax-1re 7992  ax-addrcl 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-tp 3631  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-inn 9010  df-2 9068  df-3 9069  df-ndx 12708  df-slot 12709  df-base 12711  df-plusg 12795  df-mulr 12796  df-iimas 13006
This theorem is referenced by:  imasbas  13011  imasplusg  13012  imasmulr  13013
  Copyright terms: Public domain W3C validator