ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imasival GIF version

Theorem imasival 12726
Description: Value of an image structure. The is a lemma for the theorems imasbas 12727, imasplusg 12728, and imasmulr 12729 and should not be needed once they are proved. (Contributed by Mario Carneiro, 23-Feb-2015.) (Revised by Jim Kingdon, 11-Mar-2025.) (New usage is discouraged.)
Hypotheses
Ref Expression
imasval.u (πœ‘ β†’ π‘ˆ = (𝐹 β€œs 𝑅))
imasval.v (πœ‘ β†’ 𝑉 = (Baseβ€˜π‘…))
imasval.p + = (+gβ€˜π‘…)
imasval.m Γ— = (.rβ€˜π‘…)
imasval.q Β· = ( ·𝑠 β€˜π‘…)
imasval.a (πœ‘ β†’ ✚ = βˆͺ 𝑝 ∈ 𝑉 βˆͺ π‘ž ∈ 𝑉 {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (πΉβ€˜(𝑝 + π‘ž))⟩})
imasval.t (πœ‘ β†’ βˆ™ = βˆͺ 𝑝 ∈ 𝑉 βˆͺ π‘ž ∈ 𝑉 {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (πΉβ€˜(𝑝 Γ— π‘ž))⟩})
imasval.f (πœ‘ β†’ 𝐹:𝑉–onto→𝐡)
imasval.r (πœ‘ β†’ 𝑅 ∈ 𝑍)
Assertion
Ref Expression
imasival (πœ‘ β†’ π‘ˆ = {⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), ✚ ⟩, ⟨(.rβ€˜ndx), βˆ™ ⟩})
Distinct variable groups:   𝐹,𝑝,π‘ž   𝑅,𝑝,π‘ž   𝑉,𝑝,π‘ž   πœ‘,𝑝,π‘ž
Allowed substitution hints:   𝐡(π‘ž,𝑝)   + (π‘ž,𝑝)   ✚ (π‘ž,𝑝)   βˆ™ (π‘ž,𝑝)   Β· (π‘ž,𝑝)   Γ— (π‘ž,𝑝)   π‘ˆ(π‘ž,𝑝)   𝑍(π‘ž,𝑝)

Proof of Theorem imasival
Dummy variables 𝑓 π‘Ÿ 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasval.u . 2 (πœ‘ β†’ π‘ˆ = (𝐹 β€œs 𝑅))
2 df-iimas 12722 . . . 4 β€œs = (𝑓 ∈ V, π‘Ÿ ∈ V ↦ ⦋(Baseβ€˜π‘Ÿ) / π‘£β¦Œ{⟨(Baseβ€˜ndx), ran π‘“βŸ©, ⟨(+gβ€˜ndx), βˆͺ 𝑝 ∈ 𝑣 βˆͺ π‘ž ∈ 𝑣 {⟨⟨(π‘“β€˜π‘), (π‘“β€˜π‘ž)⟩, (π‘“β€˜(𝑝(+gβ€˜π‘Ÿ)π‘ž))⟩}⟩, ⟨(.rβ€˜ndx), βˆͺ 𝑝 ∈ 𝑣 βˆͺ π‘ž ∈ 𝑣 {⟨⟨(π‘“β€˜π‘), (π‘“β€˜π‘ž)⟩, (π‘“β€˜(𝑝(.rβ€˜π‘Ÿ)π‘ž))⟩}⟩})
32a1i 9 . . 3 (πœ‘ β†’ β€œs = (𝑓 ∈ V, π‘Ÿ ∈ V ↦ ⦋(Baseβ€˜π‘Ÿ) / π‘£β¦Œ{⟨(Baseβ€˜ndx), ran π‘“βŸ©, ⟨(+gβ€˜ndx), βˆͺ 𝑝 ∈ 𝑣 βˆͺ π‘ž ∈ 𝑣 {⟨⟨(π‘“β€˜π‘), (π‘“β€˜π‘ž)⟩, (π‘“β€˜(𝑝(+gβ€˜π‘Ÿ)π‘ž))⟩}⟩, ⟨(.rβ€˜ndx), βˆͺ 𝑝 ∈ 𝑣 βˆͺ π‘ž ∈ 𝑣 {⟨⟨(π‘“β€˜π‘), (π‘“β€˜π‘ž)⟩, (π‘“β€˜(𝑝(.rβ€˜π‘Ÿ)π‘ž))⟩}⟩}))
4 basfn 12519 . . . . . 6 Base Fn V
5 vex 2740 . . . . . 6 π‘Ÿ ∈ V
6 funfvex 5532 . . . . . . 7 ((Fun Base ∧ π‘Ÿ ∈ dom Base) β†’ (Baseβ€˜π‘Ÿ) ∈ V)
76funfni 5316 . . . . . 6 ((Base Fn V ∧ π‘Ÿ ∈ V) β†’ (Baseβ€˜π‘Ÿ) ∈ V)
84, 5, 7mp2an 426 . . . . 5 (Baseβ€˜π‘Ÿ) ∈ V
98a1i 9 . . . 4 ((πœ‘ ∧ (𝑓 = 𝐹 ∧ π‘Ÿ = 𝑅)) β†’ (Baseβ€˜π‘Ÿ) ∈ V)
10 simplrl 535 . . . . . . . 8 (((πœ‘ ∧ (𝑓 = 𝐹 ∧ π‘Ÿ = 𝑅)) ∧ 𝑣 = (Baseβ€˜π‘Ÿ)) β†’ 𝑓 = 𝐹)
1110rneqd 4856 . . . . . . 7 (((πœ‘ ∧ (𝑓 = 𝐹 ∧ π‘Ÿ = 𝑅)) ∧ 𝑣 = (Baseβ€˜π‘Ÿ)) β†’ ran 𝑓 = ran 𝐹)
12 imasval.f . . . . . . . . 9 (πœ‘ β†’ 𝐹:𝑉–onto→𝐡)
13 forn 5441 . . . . . . . . 9 (𝐹:𝑉–onto→𝐡 β†’ ran 𝐹 = 𝐡)
1412, 13syl 14 . . . . . . . 8 (πœ‘ β†’ ran 𝐹 = 𝐡)
1514ad2antrr 488 . . . . . . 7 (((πœ‘ ∧ (𝑓 = 𝐹 ∧ π‘Ÿ = 𝑅)) ∧ 𝑣 = (Baseβ€˜π‘Ÿ)) β†’ ran 𝐹 = 𝐡)
1611, 15eqtrd 2210 . . . . . 6 (((πœ‘ ∧ (𝑓 = 𝐹 ∧ π‘Ÿ = 𝑅)) ∧ 𝑣 = (Baseβ€˜π‘Ÿ)) β†’ ran 𝑓 = 𝐡)
1716opeq2d 3785 . . . . 5 (((πœ‘ ∧ (𝑓 = 𝐹 ∧ π‘Ÿ = 𝑅)) ∧ 𝑣 = (Baseβ€˜π‘Ÿ)) β†’ ⟨(Baseβ€˜ndx), ran π‘“βŸ© = ⟨(Baseβ€˜ndx), 𝐡⟩)
18 simplrr 536 . . . . . . . . . 10 (((πœ‘ ∧ (𝑓 = 𝐹 ∧ π‘Ÿ = 𝑅)) ∧ 𝑣 = (Baseβ€˜π‘Ÿ)) β†’ π‘Ÿ = 𝑅)
1918fveq2d 5519 . . . . . . . . 9 (((πœ‘ ∧ (𝑓 = 𝐹 ∧ π‘Ÿ = 𝑅)) ∧ 𝑣 = (Baseβ€˜π‘Ÿ)) β†’ (Baseβ€˜π‘Ÿ) = (Baseβ€˜π‘…))
20 simpr 110 . . . . . . . . 9 (((πœ‘ ∧ (𝑓 = 𝐹 ∧ π‘Ÿ = 𝑅)) ∧ 𝑣 = (Baseβ€˜π‘Ÿ)) β†’ 𝑣 = (Baseβ€˜π‘Ÿ))
21 imasval.v . . . . . . . . . 10 (πœ‘ β†’ 𝑉 = (Baseβ€˜π‘…))
2221ad2antrr 488 . . . . . . . . 9 (((πœ‘ ∧ (𝑓 = 𝐹 ∧ π‘Ÿ = 𝑅)) ∧ 𝑣 = (Baseβ€˜π‘Ÿ)) β†’ 𝑉 = (Baseβ€˜π‘…))
2319, 20, 223eqtr4d 2220 . . . . . . . 8 (((πœ‘ ∧ (𝑓 = 𝐹 ∧ π‘Ÿ = 𝑅)) ∧ 𝑣 = (Baseβ€˜π‘Ÿ)) β†’ 𝑣 = 𝑉)
2410fveq1d 5517 . . . . . . . . . . . 12 (((πœ‘ ∧ (𝑓 = 𝐹 ∧ π‘Ÿ = 𝑅)) ∧ 𝑣 = (Baseβ€˜π‘Ÿ)) β†’ (π‘“β€˜π‘) = (πΉβ€˜π‘))
2510fveq1d 5517 . . . . . . . . . . . 12 (((πœ‘ ∧ (𝑓 = 𝐹 ∧ π‘Ÿ = 𝑅)) ∧ 𝑣 = (Baseβ€˜π‘Ÿ)) β†’ (π‘“β€˜π‘ž) = (πΉβ€˜π‘ž))
2624, 25opeq12d 3786 . . . . . . . . . . 11 (((πœ‘ ∧ (𝑓 = 𝐹 ∧ π‘Ÿ = 𝑅)) ∧ 𝑣 = (Baseβ€˜π‘Ÿ)) β†’ ⟨(π‘“β€˜π‘), (π‘“β€˜π‘ž)⟩ = ⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩)
2718fveq2d 5519 . . . . . . . . . . . . . 14 (((πœ‘ ∧ (𝑓 = 𝐹 ∧ π‘Ÿ = 𝑅)) ∧ 𝑣 = (Baseβ€˜π‘Ÿ)) β†’ (+gβ€˜π‘Ÿ) = (+gβ€˜π‘…))
28 imasval.p . . . . . . . . . . . . . 14 + = (+gβ€˜π‘…)
2927, 28eqtr4di 2228 . . . . . . . . . . . . 13 (((πœ‘ ∧ (𝑓 = 𝐹 ∧ π‘Ÿ = 𝑅)) ∧ 𝑣 = (Baseβ€˜π‘Ÿ)) β†’ (+gβ€˜π‘Ÿ) = + )
3029oveqd 5891 . . . . . . . . . . . 12 (((πœ‘ ∧ (𝑓 = 𝐹 ∧ π‘Ÿ = 𝑅)) ∧ 𝑣 = (Baseβ€˜π‘Ÿ)) β†’ (𝑝(+gβ€˜π‘Ÿ)π‘ž) = (𝑝 + π‘ž))
3110, 30fveq12d 5522 . . . . . . . . . . 11 (((πœ‘ ∧ (𝑓 = 𝐹 ∧ π‘Ÿ = 𝑅)) ∧ 𝑣 = (Baseβ€˜π‘Ÿ)) β†’ (π‘“β€˜(𝑝(+gβ€˜π‘Ÿ)π‘ž)) = (πΉβ€˜(𝑝 + π‘ž)))
3226, 31opeq12d 3786 . . . . . . . . . 10 (((πœ‘ ∧ (𝑓 = 𝐹 ∧ π‘Ÿ = 𝑅)) ∧ 𝑣 = (Baseβ€˜π‘Ÿ)) β†’ ⟨⟨(π‘“β€˜π‘), (π‘“β€˜π‘ž)⟩, (π‘“β€˜(𝑝(+gβ€˜π‘Ÿ)π‘ž))⟩ = ⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (πΉβ€˜(𝑝 + π‘ž))⟩)
3332sneqd 3605 . . . . . . . . 9 (((πœ‘ ∧ (𝑓 = 𝐹 ∧ π‘Ÿ = 𝑅)) ∧ 𝑣 = (Baseβ€˜π‘Ÿ)) β†’ {⟨⟨(π‘“β€˜π‘), (π‘“β€˜π‘ž)⟩, (π‘“β€˜(𝑝(+gβ€˜π‘Ÿ)π‘ž))⟩} = {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (πΉβ€˜(𝑝 + π‘ž))⟩})
3423, 33iuneq12d 3910 . . . . . . . 8 (((πœ‘ ∧ (𝑓 = 𝐹 ∧ π‘Ÿ = 𝑅)) ∧ 𝑣 = (Baseβ€˜π‘Ÿ)) β†’ βˆͺ π‘ž ∈ 𝑣 {⟨⟨(π‘“β€˜π‘), (π‘“β€˜π‘ž)⟩, (π‘“β€˜(𝑝(+gβ€˜π‘Ÿ)π‘ž))⟩} = βˆͺ π‘ž ∈ 𝑉 {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (πΉβ€˜(𝑝 + π‘ž))⟩})
3523, 34iuneq12d 3910 . . . . . . 7 (((πœ‘ ∧ (𝑓 = 𝐹 ∧ π‘Ÿ = 𝑅)) ∧ 𝑣 = (Baseβ€˜π‘Ÿ)) β†’ βˆͺ 𝑝 ∈ 𝑣 βˆͺ π‘ž ∈ 𝑣 {⟨⟨(π‘“β€˜π‘), (π‘“β€˜π‘ž)⟩, (π‘“β€˜(𝑝(+gβ€˜π‘Ÿ)π‘ž))⟩} = βˆͺ 𝑝 ∈ 𝑉 βˆͺ π‘ž ∈ 𝑉 {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (πΉβ€˜(𝑝 + π‘ž))⟩})
36 imasval.a . . . . . . . 8 (πœ‘ β†’ ✚ = βˆͺ 𝑝 ∈ 𝑉 βˆͺ π‘ž ∈ 𝑉 {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (πΉβ€˜(𝑝 + π‘ž))⟩})
3736ad2antrr 488 . . . . . . 7 (((πœ‘ ∧ (𝑓 = 𝐹 ∧ π‘Ÿ = 𝑅)) ∧ 𝑣 = (Baseβ€˜π‘Ÿ)) β†’ ✚ = βˆͺ 𝑝 ∈ 𝑉 βˆͺ π‘ž ∈ 𝑉 {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (πΉβ€˜(𝑝 + π‘ž))⟩})
3835, 37eqtr4d 2213 . . . . . 6 (((πœ‘ ∧ (𝑓 = 𝐹 ∧ π‘Ÿ = 𝑅)) ∧ 𝑣 = (Baseβ€˜π‘Ÿ)) β†’ βˆͺ 𝑝 ∈ 𝑣 βˆͺ π‘ž ∈ 𝑣 {⟨⟨(π‘“β€˜π‘), (π‘“β€˜π‘ž)⟩, (π‘“β€˜(𝑝(+gβ€˜π‘Ÿ)π‘ž))⟩} = ✚ )
3938opeq2d 3785 . . . . 5 (((πœ‘ ∧ (𝑓 = 𝐹 ∧ π‘Ÿ = 𝑅)) ∧ 𝑣 = (Baseβ€˜π‘Ÿ)) β†’ ⟨(+gβ€˜ndx), βˆͺ 𝑝 ∈ 𝑣 βˆͺ π‘ž ∈ 𝑣 {⟨⟨(π‘“β€˜π‘), (π‘“β€˜π‘ž)⟩, (π‘“β€˜(𝑝(+gβ€˜π‘Ÿ)π‘ž))⟩}⟩ = ⟨(+gβ€˜ndx), ✚ ⟩)
4018fveq2d 5519 . . . . . . . . . . . . . 14 (((πœ‘ ∧ (𝑓 = 𝐹 ∧ π‘Ÿ = 𝑅)) ∧ 𝑣 = (Baseβ€˜π‘Ÿ)) β†’ (.rβ€˜π‘Ÿ) = (.rβ€˜π‘…))
41 imasval.m . . . . . . . . . . . . . 14 Γ— = (.rβ€˜π‘…)
4240, 41eqtr4di 2228 . . . . . . . . . . . . 13 (((πœ‘ ∧ (𝑓 = 𝐹 ∧ π‘Ÿ = 𝑅)) ∧ 𝑣 = (Baseβ€˜π‘Ÿ)) β†’ (.rβ€˜π‘Ÿ) = Γ— )
4342oveqd 5891 . . . . . . . . . . . 12 (((πœ‘ ∧ (𝑓 = 𝐹 ∧ π‘Ÿ = 𝑅)) ∧ 𝑣 = (Baseβ€˜π‘Ÿ)) β†’ (𝑝(.rβ€˜π‘Ÿ)π‘ž) = (𝑝 Γ— π‘ž))
4410, 43fveq12d 5522 . . . . . . . . . . 11 (((πœ‘ ∧ (𝑓 = 𝐹 ∧ π‘Ÿ = 𝑅)) ∧ 𝑣 = (Baseβ€˜π‘Ÿ)) β†’ (π‘“β€˜(𝑝(.rβ€˜π‘Ÿ)π‘ž)) = (πΉβ€˜(𝑝 Γ— π‘ž)))
4526, 44opeq12d 3786 . . . . . . . . . 10 (((πœ‘ ∧ (𝑓 = 𝐹 ∧ π‘Ÿ = 𝑅)) ∧ 𝑣 = (Baseβ€˜π‘Ÿ)) β†’ ⟨⟨(π‘“β€˜π‘), (π‘“β€˜π‘ž)⟩, (π‘“β€˜(𝑝(.rβ€˜π‘Ÿ)π‘ž))⟩ = ⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (πΉβ€˜(𝑝 Γ— π‘ž))⟩)
4645sneqd 3605 . . . . . . . . 9 (((πœ‘ ∧ (𝑓 = 𝐹 ∧ π‘Ÿ = 𝑅)) ∧ 𝑣 = (Baseβ€˜π‘Ÿ)) β†’ {⟨⟨(π‘“β€˜π‘), (π‘“β€˜π‘ž)⟩, (π‘“β€˜(𝑝(.rβ€˜π‘Ÿ)π‘ž))⟩} = {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (πΉβ€˜(𝑝 Γ— π‘ž))⟩})
4723, 46iuneq12d 3910 . . . . . . . 8 (((πœ‘ ∧ (𝑓 = 𝐹 ∧ π‘Ÿ = 𝑅)) ∧ 𝑣 = (Baseβ€˜π‘Ÿ)) β†’ βˆͺ π‘ž ∈ 𝑣 {⟨⟨(π‘“β€˜π‘), (π‘“β€˜π‘ž)⟩, (π‘“β€˜(𝑝(.rβ€˜π‘Ÿ)π‘ž))⟩} = βˆͺ π‘ž ∈ 𝑉 {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (πΉβ€˜(𝑝 Γ— π‘ž))⟩})
4823, 47iuneq12d 3910 . . . . . . 7 (((πœ‘ ∧ (𝑓 = 𝐹 ∧ π‘Ÿ = 𝑅)) ∧ 𝑣 = (Baseβ€˜π‘Ÿ)) β†’ βˆͺ 𝑝 ∈ 𝑣 βˆͺ π‘ž ∈ 𝑣 {⟨⟨(π‘“β€˜π‘), (π‘“β€˜π‘ž)⟩, (π‘“β€˜(𝑝(.rβ€˜π‘Ÿ)π‘ž))⟩} = βˆͺ 𝑝 ∈ 𝑉 βˆͺ π‘ž ∈ 𝑉 {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (πΉβ€˜(𝑝 Γ— π‘ž))⟩})
49 imasval.t . . . . . . . 8 (πœ‘ β†’ βˆ™ = βˆͺ 𝑝 ∈ 𝑉 βˆͺ π‘ž ∈ 𝑉 {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (πΉβ€˜(𝑝 Γ— π‘ž))⟩})
5049ad2antrr 488 . . . . . . 7 (((πœ‘ ∧ (𝑓 = 𝐹 ∧ π‘Ÿ = 𝑅)) ∧ 𝑣 = (Baseβ€˜π‘Ÿ)) β†’ βˆ™ = βˆͺ 𝑝 ∈ 𝑉 βˆͺ π‘ž ∈ 𝑉 {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (πΉβ€˜(𝑝 Γ— π‘ž))⟩})
5148, 50eqtr4d 2213 . . . . . 6 (((πœ‘ ∧ (𝑓 = 𝐹 ∧ π‘Ÿ = 𝑅)) ∧ 𝑣 = (Baseβ€˜π‘Ÿ)) β†’ βˆͺ 𝑝 ∈ 𝑣 βˆͺ π‘ž ∈ 𝑣 {⟨⟨(π‘“β€˜π‘), (π‘“β€˜π‘ž)⟩, (π‘“β€˜(𝑝(.rβ€˜π‘Ÿ)π‘ž))⟩} = βˆ™ )
5251opeq2d 3785 . . . . 5 (((πœ‘ ∧ (𝑓 = 𝐹 ∧ π‘Ÿ = 𝑅)) ∧ 𝑣 = (Baseβ€˜π‘Ÿ)) β†’ ⟨(.rβ€˜ndx), βˆͺ 𝑝 ∈ 𝑣 βˆͺ π‘ž ∈ 𝑣 {⟨⟨(π‘“β€˜π‘), (π‘“β€˜π‘ž)⟩, (π‘“β€˜(𝑝(.rβ€˜π‘Ÿ)π‘ž))⟩}⟩ = ⟨(.rβ€˜ndx), βˆ™ ⟩)
5317, 39, 52tpeq123d 3684 . . . 4 (((πœ‘ ∧ (𝑓 = 𝐹 ∧ π‘Ÿ = 𝑅)) ∧ 𝑣 = (Baseβ€˜π‘Ÿ)) β†’ {⟨(Baseβ€˜ndx), ran π‘“βŸ©, ⟨(+gβ€˜ndx), βˆͺ 𝑝 ∈ 𝑣 βˆͺ π‘ž ∈ 𝑣 {⟨⟨(π‘“β€˜π‘), (π‘“β€˜π‘ž)⟩, (π‘“β€˜(𝑝(+gβ€˜π‘Ÿ)π‘ž))⟩}⟩, ⟨(.rβ€˜ndx), βˆͺ 𝑝 ∈ 𝑣 βˆͺ π‘ž ∈ 𝑣 {⟨⟨(π‘“β€˜π‘), (π‘“β€˜π‘ž)⟩, (π‘“β€˜(𝑝(.rβ€˜π‘Ÿ)π‘ž))⟩}⟩} = {⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), ✚ ⟩, ⟨(.rβ€˜ndx), βˆ™ ⟩})
549, 53csbied 3103 . . 3 ((πœ‘ ∧ (𝑓 = 𝐹 ∧ π‘Ÿ = 𝑅)) β†’ ⦋(Baseβ€˜π‘Ÿ) / π‘£β¦Œ{⟨(Baseβ€˜ndx), ran π‘“βŸ©, ⟨(+gβ€˜ndx), βˆͺ 𝑝 ∈ 𝑣 βˆͺ π‘ž ∈ 𝑣 {⟨⟨(π‘“β€˜π‘), (π‘“β€˜π‘ž)⟩, (π‘“β€˜(𝑝(+gβ€˜π‘Ÿ)π‘ž))⟩}⟩, ⟨(.rβ€˜ndx), βˆͺ 𝑝 ∈ 𝑣 βˆͺ π‘ž ∈ 𝑣 {⟨⟨(π‘“β€˜π‘), (π‘“β€˜π‘ž)⟩, (π‘“β€˜(𝑝(.rβ€˜π‘Ÿ)π‘ž))⟩}⟩} = {⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), ✚ ⟩, ⟨(.rβ€˜ndx), βˆ™ ⟩})
55 fof 5438 . . . . 5 (𝐹:𝑉–onto→𝐡 β†’ 𝐹:π‘‰βŸΆπ΅)
5612, 55syl 14 . . . 4 (πœ‘ β†’ 𝐹:π‘‰βŸΆπ΅)
57 imasval.r . . . . . . 7 (πœ‘ β†’ 𝑅 ∈ 𝑍)
5857elexd 2750 . . . . . 6 (πœ‘ β†’ 𝑅 ∈ V)
59 funfvex 5532 . . . . . . 7 ((Fun Base ∧ 𝑅 ∈ dom Base) β†’ (Baseβ€˜π‘…) ∈ V)
6059funfni 5316 . . . . . 6 ((Base Fn V ∧ 𝑅 ∈ V) β†’ (Baseβ€˜π‘…) ∈ V)
614, 58, 60sylancr 414 . . . . 5 (πœ‘ β†’ (Baseβ€˜π‘…) ∈ V)
6221, 61eqeltrd 2254 . . . 4 (πœ‘ β†’ 𝑉 ∈ V)
6356, 62fexd 5746 . . 3 (πœ‘ β†’ 𝐹 ∈ V)
64 basendxnn 12517 . . . . 5 (Baseβ€˜ndx) ∈ β„•
65 focdmex 6115 . . . . . 6 (𝑉 ∈ V β†’ (𝐹:𝑉–onto→𝐡 β†’ 𝐡 ∈ V))
6662, 12, 65sylc 62 . . . . 5 (πœ‘ β†’ 𝐡 ∈ V)
67 opexg 4228 . . . . 5 (((Baseβ€˜ndx) ∈ β„• ∧ 𝐡 ∈ V) β†’ ⟨(Baseβ€˜ndx), 𝐡⟩ ∈ V)
6864, 66, 67sylancr 414 . . . 4 (πœ‘ β†’ ⟨(Baseβ€˜ndx), 𝐡⟩ ∈ V)
69 plusgndxnn 12569 . . . . 5 (+gβ€˜ndx) ∈ β„•
7063ad2antrr 488 . . . . . . . . . . . . . 14 (((πœ‘ ∧ 𝑝 ∈ 𝑉) ∧ π‘ž ∈ 𝑉) β†’ 𝐹 ∈ V)
71 vex 2740 . . . . . . . . . . . . . . 15 𝑝 ∈ V
7271a1i 9 . . . . . . . . . . . . . 14 (((πœ‘ ∧ 𝑝 ∈ 𝑉) ∧ π‘ž ∈ 𝑉) β†’ 𝑝 ∈ V)
73 fvexg 5534 . . . . . . . . . . . . . 14 ((𝐹 ∈ V ∧ 𝑝 ∈ V) β†’ (πΉβ€˜π‘) ∈ V)
7470, 72, 73syl2anc 411 . . . . . . . . . . . . 13 (((πœ‘ ∧ 𝑝 ∈ 𝑉) ∧ π‘ž ∈ 𝑉) β†’ (πΉβ€˜π‘) ∈ V)
75 vex 2740 . . . . . . . . . . . . . . 15 π‘ž ∈ V
7675a1i 9 . . . . . . . . . . . . . 14 (((πœ‘ ∧ 𝑝 ∈ 𝑉) ∧ π‘ž ∈ 𝑉) β†’ π‘ž ∈ V)
77 fvexg 5534 . . . . . . . . . . . . . 14 ((𝐹 ∈ V ∧ π‘ž ∈ V) β†’ (πΉβ€˜π‘ž) ∈ V)
7870, 76, 77syl2anc 411 . . . . . . . . . . . . 13 (((πœ‘ ∧ 𝑝 ∈ 𝑉) ∧ π‘ž ∈ 𝑉) β†’ (πΉβ€˜π‘ž) ∈ V)
79 opexg 4228 . . . . . . . . . . . . 13 (((πΉβ€˜π‘) ∈ V ∧ (πΉβ€˜π‘ž) ∈ V) β†’ ⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩ ∈ V)
8074, 78, 79syl2anc 411 . . . . . . . . . . . 12 (((πœ‘ ∧ 𝑝 ∈ 𝑉) ∧ π‘ž ∈ 𝑉) β†’ ⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩ ∈ V)
81 plusgslid 12570 . . . . . . . . . . . . . . . . . 18 (+g = Slot (+gβ€˜ndx) ∧ (+gβ€˜ndx) ∈ β„•)
8281slotex 12488 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ 𝑍 β†’ (+gβ€˜π‘…) ∈ V)
8357, 82syl 14 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ (+gβ€˜π‘…) ∈ V)
8428, 83eqeltrid 2264 . . . . . . . . . . . . . . 15 (πœ‘ β†’ + ∈ V)
8584ad2antrr 488 . . . . . . . . . . . . . 14 (((πœ‘ ∧ 𝑝 ∈ 𝑉) ∧ π‘ž ∈ 𝑉) β†’ + ∈ V)
86 ovexg 5908 . . . . . . . . . . . . . 14 ((𝑝 ∈ V ∧ + ∈ V ∧ π‘ž ∈ V) β†’ (𝑝 + π‘ž) ∈ V)
8772, 85, 76, 86syl3anc 1238 . . . . . . . . . . . . 13 (((πœ‘ ∧ 𝑝 ∈ 𝑉) ∧ π‘ž ∈ 𝑉) β†’ (𝑝 + π‘ž) ∈ V)
88 fvexg 5534 . . . . . . . . . . . . 13 ((𝐹 ∈ V ∧ (𝑝 + π‘ž) ∈ V) β†’ (πΉβ€˜(𝑝 + π‘ž)) ∈ V)
8970, 87, 88syl2anc 411 . . . . . . . . . . . 12 (((πœ‘ ∧ 𝑝 ∈ 𝑉) ∧ π‘ž ∈ 𝑉) β†’ (πΉβ€˜(𝑝 + π‘ž)) ∈ V)
90 opexg 4228 . . . . . . . . . . . 12 ((⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩ ∈ V ∧ (πΉβ€˜(𝑝 + π‘ž)) ∈ V) β†’ ⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (πΉβ€˜(𝑝 + π‘ž))⟩ ∈ V)
9180, 89, 90syl2anc 411 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑝 ∈ 𝑉) ∧ π‘ž ∈ 𝑉) β†’ ⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (πΉβ€˜(𝑝 + π‘ž))⟩ ∈ V)
92 snexg 4184 . . . . . . . . . . 11 (⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (πΉβ€˜(𝑝 + π‘ž))⟩ ∈ V β†’ {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (πΉβ€˜(𝑝 + π‘ž))⟩} ∈ V)
9391, 92syl 14 . . . . . . . . . 10 (((πœ‘ ∧ 𝑝 ∈ 𝑉) ∧ π‘ž ∈ 𝑉) β†’ {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (πΉβ€˜(𝑝 + π‘ž))⟩} ∈ V)
9493ralrimiva 2550 . . . . . . . . 9 ((πœ‘ ∧ 𝑝 ∈ 𝑉) β†’ βˆ€π‘ž ∈ 𝑉 {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (πΉβ€˜(𝑝 + π‘ž))⟩} ∈ V)
95 iunexg 6119 . . . . . . . . 9 ((𝑉 ∈ V ∧ βˆ€π‘ž ∈ 𝑉 {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (πΉβ€˜(𝑝 + π‘ž))⟩} ∈ V) β†’ βˆͺ π‘ž ∈ 𝑉 {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (πΉβ€˜(𝑝 + π‘ž))⟩} ∈ V)
9662, 94, 95syl2an2r 595 . . . . . . . 8 ((πœ‘ ∧ 𝑝 ∈ 𝑉) β†’ βˆͺ π‘ž ∈ 𝑉 {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (πΉβ€˜(𝑝 + π‘ž))⟩} ∈ V)
9796ralrimiva 2550 . . . . . . 7 (πœ‘ β†’ βˆ€π‘ ∈ 𝑉 βˆͺ π‘ž ∈ 𝑉 {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (πΉβ€˜(𝑝 + π‘ž))⟩} ∈ V)
98 iunexg 6119 . . . . . . 7 ((𝑉 ∈ V ∧ βˆ€π‘ ∈ 𝑉 βˆͺ π‘ž ∈ 𝑉 {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (πΉβ€˜(𝑝 + π‘ž))⟩} ∈ V) β†’ βˆͺ 𝑝 ∈ 𝑉 βˆͺ π‘ž ∈ 𝑉 {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (πΉβ€˜(𝑝 + π‘ž))⟩} ∈ V)
9962, 97, 98syl2anc 411 . . . . . 6 (πœ‘ β†’ βˆͺ 𝑝 ∈ 𝑉 βˆͺ π‘ž ∈ 𝑉 {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (πΉβ€˜(𝑝 + π‘ž))⟩} ∈ V)
10036, 99eqeltrd 2254 . . . . 5 (πœ‘ β†’ ✚ ∈ V)
101 opexg 4228 . . . . 5 (((+gβ€˜ndx) ∈ β„• ∧ ✚ ∈ V) β†’ ⟨(+gβ€˜ndx), ✚ ⟩ ∈ V)
10269, 100, 101sylancr 414 . . . 4 (πœ‘ β†’ ⟨(+gβ€˜ndx), ✚ ⟩ ∈ V)
103 mulrslid 12589 . . . . . 6 (.r = Slot (.rβ€˜ndx) ∧ (.rβ€˜ndx) ∈ β„•)
104103simpri 113 . . . . 5 (.rβ€˜ndx) ∈ β„•
105103slotex 12488 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ 𝑍 β†’ (.rβ€˜π‘…) ∈ V)
10657, 105syl 14 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ (.rβ€˜π‘…) ∈ V)
10741, 106eqeltrid 2264 . . . . . . . . . . . . . . 15 (πœ‘ β†’ Γ— ∈ V)
108107ad2antrr 488 . . . . . . . . . . . . . 14 (((πœ‘ ∧ 𝑝 ∈ 𝑉) ∧ π‘ž ∈ 𝑉) β†’ Γ— ∈ V)
109 ovexg 5908 . . . . . . . . . . . . . 14 ((𝑝 ∈ V ∧ Γ— ∈ V ∧ π‘ž ∈ V) β†’ (𝑝 Γ— π‘ž) ∈ V)
11072, 108, 76, 109syl3anc 1238 . . . . . . . . . . . . 13 (((πœ‘ ∧ 𝑝 ∈ 𝑉) ∧ π‘ž ∈ 𝑉) β†’ (𝑝 Γ— π‘ž) ∈ V)
111 fvexg 5534 . . . . . . . . . . . . 13 ((𝐹 ∈ V ∧ (𝑝 Γ— π‘ž) ∈ V) β†’ (πΉβ€˜(𝑝 Γ— π‘ž)) ∈ V)
11270, 110, 111syl2anc 411 . . . . . . . . . . . 12 (((πœ‘ ∧ 𝑝 ∈ 𝑉) ∧ π‘ž ∈ 𝑉) β†’ (πΉβ€˜(𝑝 Γ— π‘ž)) ∈ V)
113 opexg 4228 . . . . . . . . . . . 12 ((⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩ ∈ V ∧ (πΉβ€˜(𝑝 Γ— π‘ž)) ∈ V) β†’ ⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (πΉβ€˜(𝑝 Γ— π‘ž))⟩ ∈ V)
11480, 112, 113syl2anc 411 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑝 ∈ 𝑉) ∧ π‘ž ∈ 𝑉) β†’ ⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (πΉβ€˜(𝑝 Γ— π‘ž))⟩ ∈ V)
115 snexg 4184 . . . . . . . . . . 11 (⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (πΉβ€˜(𝑝 Γ— π‘ž))⟩ ∈ V β†’ {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (πΉβ€˜(𝑝 Γ— π‘ž))⟩} ∈ V)
116114, 115syl 14 . . . . . . . . . 10 (((πœ‘ ∧ 𝑝 ∈ 𝑉) ∧ π‘ž ∈ 𝑉) β†’ {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (πΉβ€˜(𝑝 Γ— π‘ž))⟩} ∈ V)
117116ralrimiva 2550 . . . . . . . . 9 ((πœ‘ ∧ 𝑝 ∈ 𝑉) β†’ βˆ€π‘ž ∈ 𝑉 {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (πΉβ€˜(𝑝 Γ— π‘ž))⟩} ∈ V)
118 iunexg 6119 . . . . . . . . 9 ((𝑉 ∈ V ∧ βˆ€π‘ž ∈ 𝑉 {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (πΉβ€˜(𝑝 Γ— π‘ž))⟩} ∈ V) β†’ βˆͺ π‘ž ∈ 𝑉 {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (πΉβ€˜(𝑝 Γ— π‘ž))⟩} ∈ V)
11962, 117, 118syl2an2r 595 . . . . . . . 8 ((πœ‘ ∧ 𝑝 ∈ 𝑉) β†’ βˆͺ π‘ž ∈ 𝑉 {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (πΉβ€˜(𝑝 Γ— π‘ž))⟩} ∈ V)
120119ralrimiva 2550 . . . . . . 7 (πœ‘ β†’ βˆ€π‘ ∈ 𝑉 βˆͺ π‘ž ∈ 𝑉 {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (πΉβ€˜(𝑝 Γ— π‘ž))⟩} ∈ V)
121 iunexg 6119 . . . . . . 7 ((𝑉 ∈ V ∧ βˆ€π‘ ∈ 𝑉 βˆͺ π‘ž ∈ 𝑉 {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (πΉβ€˜(𝑝 Γ— π‘ž))⟩} ∈ V) β†’ βˆͺ 𝑝 ∈ 𝑉 βˆͺ π‘ž ∈ 𝑉 {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (πΉβ€˜(𝑝 Γ— π‘ž))⟩} ∈ V)
12262, 120, 121syl2anc 411 . . . . . 6 (πœ‘ β†’ βˆͺ 𝑝 ∈ 𝑉 βˆͺ π‘ž ∈ 𝑉 {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (πΉβ€˜(𝑝 Γ— π‘ž))⟩} ∈ V)
12349, 122eqeltrd 2254 . . . . 5 (πœ‘ β†’ βˆ™ ∈ V)
124 opexg 4228 . . . . 5 (((.rβ€˜ndx) ∈ β„• ∧ βˆ™ ∈ V) β†’ ⟨(.rβ€˜ndx), βˆ™ ⟩ ∈ V)
125104, 123, 124sylancr 414 . . . 4 (πœ‘ β†’ ⟨(.rβ€˜ndx), βˆ™ ⟩ ∈ V)
126 tpexg 4444 . . . 4 ((⟨(Baseβ€˜ndx), 𝐡⟩ ∈ V ∧ ⟨(+gβ€˜ndx), ✚ ⟩ ∈ V ∧ ⟨(.rβ€˜ndx), βˆ™ ⟩ ∈ V) β†’ {⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), ✚ ⟩, ⟨(.rβ€˜ndx), βˆ™ ⟩} ∈ V)
12768, 102, 125, 126syl3anc 1238 . . 3 (πœ‘ β†’ {⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), ✚ ⟩, ⟨(.rβ€˜ndx), βˆ™ ⟩} ∈ V)
1283, 54, 63, 58, 127ovmpod 6001 . 2 (πœ‘ β†’ (𝐹 β€œs 𝑅) = {⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), ✚ ⟩, ⟨(.rβ€˜ndx), βˆ™ ⟩})
1291, 128eqtrd 2210 1 (πœ‘ β†’ π‘ˆ = {⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), ✚ ⟩, ⟨(.rβ€˜ndx), βˆ™ ⟩})
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   = wceq 1353   ∈ wcel 2148  βˆ€wral 2455  Vcvv 2737  β¦‹csb 3057  {csn 3592  {ctp 3594  βŸ¨cop 3595  βˆͺ ciun 3886  ran crn 4627   Fn wfn 5211  βŸΆwf 5212  β€“ontoβ†’wfo 5214  β€˜cfv 5216  (class class class)co 5874   ∈ cmpo 5876  β„•cn 8918  ndxcnx 12458  Slot cslot 12460  Basecbs 12461  +gcplusg 12535  .rcmulr 12536   ·𝑠 cvsca 12539   β€œs cimas 12719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-cnex 7901  ax-resscn 7902  ax-1re 7904  ax-addrcl 7907
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-tp 3600  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-id 4293  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-ov 5877  df-oprab 5878  df-mpo 5879  df-inn 8919  df-2 8977  df-3 8978  df-ndx 12464  df-slot 12465  df-base 12467  df-plusg 12548  df-mulr 12549  df-iimas 12722
This theorem is referenced by:  imasbas  12727  imasplusg  12728  imasmulr  12729
  Copyright terms: Public domain W3C validator