| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-in | GIF version | ||
| Description: Define the intersection of two classes. Definition 5.6 of [TakeutiZaring] p. 16. Contrast this operation with union (𝐴 ∪ 𝐵) (df-un 3171) and difference (𝐴 ∖ 𝐵) (df-dif 3169). (Contributed by NM, 29-Apr-1994.) |
| Ref | Expression |
|---|---|
| df-in | ⊢ (𝐴 ∩ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | 1, 2 | cin 3166 | . 2 class (𝐴 ∩ 𝐵) |
| 4 | vx | . . . . . 6 setvar 𝑥 | |
| 5 | 4 | cv 1372 | . . . . 5 class 𝑥 |
| 6 | 5, 1 | wcel 2177 | . . . 4 wff 𝑥 ∈ 𝐴 |
| 7 | 5, 2 | wcel 2177 | . . . 4 wff 𝑥 ∈ 𝐵 |
| 8 | 6, 7 | wa 104 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) |
| 9 | 8, 4 | cab 2192 | . 2 class {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} |
| 10 | 3, 9 | wceq 1373 | 1 wff (𝐴 ∩ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} |
| Colors of variables: wff set class |
| This definition is referenced by: dfin5 3174 ssalel 3182 elin 3357 disj 3510 iinxprg 4004 bdcin 15873 |
| Copyright terms: Public domain | W3C validator |