Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-in GIF version

Definition df-in 3077
 Description: Define the intersection of two classes. Definition 5.6 of [TakeutiZaring] p. 16. Contrast this operation with union (𝐴 ∪ 𝐵) (df-un 3075) and difference (𝐴 ∖ 𝐵) (df-dif 3073). (Contributed by NM, 29-Apr-1994.)
Assertion
Ref Expression
df-in (𝐴𝐵) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Detailed syntax breakdown of Definition df-in
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
31, 2cin 3070 . 2 class (𝐴𝐵)
4 vx . . . . . 6 setvar 𝑥
54cv 1330 . . . . 5 class 𝑥
65, 1wcel 1480 . . . 4 wff 𝑥𝐴
75, 2wcel 1480 . . . 4 wff 𝑥𝐵
86, 7wa 103 . . 3 wff (𝑥𝐴𝑥𝐵)
98, 4cab 2125 . 2 class {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
103, 9wceq 1331 1 wff (𝐴𝐵) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
 Colors of variables: wff set class This definition is referenced by:  dfin5  3078  dfss2  3086  elin  3259  disj  3411  iinxprg  3887  bdcin  13145
 Copyright terms: Public domain W3C validator