ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-in GIF version

Definition df-in 3159
Description: Define the intersection of two classes. Definition 5.6 of [TakeutiZaring] p. 16. Contrast this operation with union (𝐴𝐵) (df-un 3157) and difference (𝐴𝐵) (df-dif 3155). (Contributed by NM, 29-Apr-1994.)
Assertion
Ref Expression
df-in (𝐴𝐵) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Detailed syntax breakdown of Definition df-in
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
31, 2cin 3152 . 2 class (𝐴𝐵)
4 vx . . . . . 6 setvar 𝑥
54cv 1363 . . . . 5 class 𝑥
65, 1wcel 2164 . . . 4 wff 𝑥𝐴
75, 2wcel 2164 . . . 4 wff 𝑥𝐵
86, 7wa 104 . . 3 wff (𝑥𝐴𝑥𝐵)
98, 4cab 2179 . 2 class {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
103, 9wceq 1364 1 wff (𝐴𝐵) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
Colors of variables: wff set class
This definition is referenced by:  dfin5  3160  dfss2  3168  elin  3342  disj  3495  iinxprg  3987  bdcin  15355
  Copyright terms: Public domain W3C validator