| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > df-in | GIF version | ||
| Description: Define the intersection of two classes. Definition 5.6 of [TakeutiZaring] p. 16. Contrast this operation with union (𝐴 ∪ 𝐵) (df-un 3161) and difference (𝐴 ∖ 𝐵) (df-dif 3159). (Contributed by NM, 29-Apr-1994.) | 
| Ref | Expression | 
|---|---|
| df-in | ⊢ (𝐴 ∩ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | 1, 2 | cin 3156 | . 2 class (𝐴 ∩ 𝐵) | 
| 4 | vx | . . . . . 6 setvar 𝑥 | |
| 5 | 4 | cv 1363 | . . . . 5 class 𝑥 | 
| 6 | 5, 1 | wcel 2167 | . . . 4 wff 𝑥 ∈ 𝐴 | 
| 7 | 5, 2 | wcel 2167 | . . . 4 wff 𝑥 ∈ 𝐵 | 
| 8 | 6, 7 | wa 104 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) | 
| 9 | 8, 4 | cab 2182 | . 2 class {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} | 
| 10 | 3, 9 | wceq 1364 | 1 wff (𝐴 ∩ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} | 
| Colors of variables: wff set class | 
| This definition is referenced by: dfin5 3164 dfss2 3172 elin 3346 disj 3499 iinxprg 3991 bdcin 15509 | 
| Copyright terms: Public domain | W3C validator |