ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-in GIF version

Definition df-in 3121
Description: Define the intersection of two classes. Definition 5.6 of [TakeutiZaring] p. 16. Contrast this operation with union (𝐴𝐵) (df-un 3119) and difference (𝐴𝐵) (df-dif 3117). (Contributed by NM, 29-Apr-1994.)
Assertion
Ref Expression
df-in (𝐴𝐵) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Detailed syntax breakdown of Definition df-in
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
31, 2cin 3114 . 2 class (𝐴𝐵)
4 vx . . . . . 6 setvar 𝑥
54cv 1342 . . . . 5 class 𝑥
65, 1wcel 2136 . . . 4 wff 𝑥𝐴
75, 2wcel 2136 . . . 4 wff 𝑥𝐵
86, 7wa 103 . . 3 wff (𝑥𝐴𝑥𝐵)
98, 4cab 2151 . 2 class {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
103, 9wceq 1343 1 wff (𝐴𝐵) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
Colors of variables: wff set class
This definition is referenced by:  dfin5  3122  dfss2  3130  elin  3304  disj  3456  iinxprg  3939  bdcin  13705
  Copyright terms: Public domain W3C validator