ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfin5 GIF version

Theorem dfin5 3123
Description: Alternate definition for the intersection of two classes. (Contributed by NM, 6-Jul-2005.)
Assertion
Ref Expression
dfin5 (𝐴𝐵) = {𝑥𝐴𝑥𝐵}
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem dfin5
StepHypRef Expression
1 df-in 3122 . 2 (𝐴𝐵) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
2 df-rab 2453 . 2 {𝑥𝐴𝑥𝐵} = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
31, 2eqtr4i 2189 1 (𝐴𝐵) = {𝑥𝐴𝑥𝐵}
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1343  wcel 2136  {cab 2151  {crab 2448  cin 3115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-4 1498  ax-17 1514  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-cleq 2158  df-rab 2453  df-in 3122
This theorem is referenced by:  nfin  3328  rabbi2dva  3330  ssfidc  6900  suprzubdc  11885  nninfdcex  11886  nnmindc  11967  nnminle  11968  znnen  12331  bj-inex  13789
  Copyright terms: Public domain W3C validator