ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfin5 GIF version

Theorem dfin5 3204
Description: Alternate definition for the intersection of two classes. (Contributed by NM, 6-Jul-2005.)
Assertion
Ref Expression
dfin5 (𝐴𝐵) = {𝑥𝐴𝑥𝐵}
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem dfin5
StepHypRef Expression
1 df-in 3203 . 2 (𝐴𝐵) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
2 df-rab 2517 . 2 {𝑥𝐴𝑥𝐵} = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
31, 2eqtr4i 2253 1 (𝐴𝐵) = {𝑥𝐴𝑥𝐵}
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1395  wcel 2200  {cab 2215  {crab 2512  cin 3196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-4 1556  ax-17 1572  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-cleq 2222  df-rab 2517  df-in 3203
This theorem is referenced by:  nfin  3410  rabbi2dva  3412  ssfidc  7095  suprzubdc  10451  nninfdcex  10452  nnmindc  12550  nnminle  12551  znnen  12964  bj-inex  16228  2omap  16318  pw1map  16320
  Copyright terms: Public domain W3C validator