ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfin5 GIF version

Theorem dfin5 3044
Description: Alternate definition for the intersection of two classes. (Contributed by NM, 6-Jul-2005.)
Assertion
Ref Expression
dfin5 (𝐴𝐵) = {𝑥𝐴𝑥𝐵}
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem dfin5
StepHypRef Expression
1 df-in 3043 . 2 (𝐴𝐵) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
2 df-rab 2399 . 2 {𝑥𝐴𝑥𝐵} = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
31, 2eqtr4i 2138 1 (𝐴𝐵) = {𝑥𝐴𝑥𝐵}
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1314  wcel 1463  {cab 2101  {crab 2394  cin 3036
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1406  ax-gen 1408  ax-4 1470  ax-17 1489  ax-ext 2097
This theorem depends on definitions:  df-bi 116  df-cleq 2108  df-rab 2399  df-in 3043
This theorem is referenced by:  nfin  3248  rabbi2dva  3250  ssfidc  6775  znnen  11756  bj-inex  12797
  Copyright terms: Public domain W3C validator