ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfin5 GIF version

Theorem dfin5 3161
Description: Alternate definition for the intersection of two classes. (Contributed by NM, 6-Jul-2005.)
Assertion
Ref Expression
dfin5 (𝐴𝐵) = {𝑥𝐴𝑥𝐵}
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem dfin5
StepHypRef Expression
1 df-in 3160 . 2 (𝐴𝐵) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
2 df-rab 2481 . 2 {𝑥𝐴𝑥𝐵} = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
31, 2eqtr4i 2217 1 (𝐴𝐵) = {𝑥𝐴𝑥𝐵}
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1364  wcel 2164  {cab 2179  {crab 2476  cin 3153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-4 1521  ax-17 1537  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-cleq 2186  df-rab 2481  df-in 3160
This theorem is referenced by:  nfin  3366  rabbi2dva  3368  ssfidc  6993  suprzubdc  12092  nninfdcex  12093  nnmindc  12174  nnminle  12175  znnen  12558  bj-inex  15469
  Copyright terms: Public domain W3C validator