ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disj GIF version

Theorem disj 3511
Description: Two ways of saying that two classes are disjoint (have no members in common). (Contributed by NM, 17-Feb-2004.)
Assertion
Ref Expression
disj ((𝐴𝐵) = ∅ ↔ ∀𝑥𝐴 ¬ 𝑥𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem disj
StepHypRef Expression
1 df-in 3174 . . . 4 (𝐴𝐵) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
21eqeq1i 2214 . . 3 ((𝐴𝐵) = ∅ ↔ {𝑥 ∣ (𝑥𝐴𝑥𝐵)} = ∅)
3 abeq1 2316 . . 3 ({𝑥 ∣ (𝑥𝐴𝑥𝐵)} = ∅ ↔ ∀𝑥((𝑥𝐴𝑥𝐵) ↔ 𝑥 ∈ ∅))
4 imnan 692 . . . . 5 ((𝑥𝐴 → ¬ 𝑥𝐵) ↔ ¬ (𝑥𝐴𝑥𝐵))
5 noel 3466 . . . . . 6 ¬ 𝑥 ∈ ∅
65nbn 701 . . . . 5 (¬ (𝑥𝐴𝑥𝐵) ↔ ((𝑥𝐴𝑥𝐵) ↔ 𝑥 ∈ ∅))
74, 6bitr2i 185 . . . 4 (((𝑥𝐴𝑥𝐵) ↔ 𝑥 ∈ ∅) ↔ (𝑥𝐴 → ¬ 𝑥𝐵))
87albii 1494 . . 3 (∀𝑥((𝑥𝐴𝑥𝐵) ↔ 𝑥 ∈ ∅) ↔ ∀𝑥(𝑥𝐴 → ¬ 𝑥𝐵))
92, 3, 83bitri 206 . 2 ((𝐴𝐵) = ∅ ↔ ∀𝑥(𝑥𝐴 → ¬ 𝑥𝐵))
10 df-ral 2490 . 2 (∀𝑥𝐴 ¬ 𝑥𝐵 ↔ ∀𝑥(𝑥𝐴 → ¬ 𝑥𝐵))
119, 10bitr4i 187 1 ((𝐴𝐵) = ∅ ↔ ∀𝑥𝐴 ¬ 𝑥𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wal 1371   = wceq 1373  wcel 2177  {cab 2192  wral 2485  cin 3167  c0 3462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-v 2775  df-dif 3170  df-in 3174  df-nul 3463
This theorem is referenced by:  disjr  3512  disj1  3513  disjne  3516  f0rn0  5479  renfdisj  8145  fvinim0ffz  10383  xnn0nnen  10595  fxnn0nninf  10597  fprodsplitdc  11957  exmidunben  12847  dedekindeulemuub  15139  dedekindeulemlu  15143  dedekindicclemuub  15148  dedekindicclemlu  15152  ivthinclemdisj  15162  exmidsbthrlem  16076
  Copyright terms: Public domain W3C validator