| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > disj | GIF version | ||
| Description: Two ways of saying that two classes are disjoint (have no members in common). (Contributed by NM, 17-Feb-2004.) | 
| Ref | Expression | 
|---|---|
| disj | ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-in 3163 | . . . 4 ⊢ (𝐴 ∩ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} | |
| 2 | 1 | eqeq1i 2204 | . . 3 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} = ∅) | 
| 3 | abeq1 2306 | . . 3 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} = ∅ ↔ ∀𝑥((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ ∅)) | |
| 4 | imnan 691 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵) ↔ ¬ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
| 5 | noel 3454 | . . . . . 6 ⊢ ¬ 𝑥 ∈ ∅ | |
| 6 | 5 | nbn 700 | . . . . 5 ⊢ (¬ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ ∅)) | 
| 7 | 4, 6 | bitr2i 185 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ ∅) ↔ (𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵)) | 
| 8 | 7 | albii 1484 | . . 3 ⊢ (∀𝑥((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ ∅) ↔ ∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵)) | 
| 9 | 2, 3, 8 | 3bitri 206 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵)) | 
| 10 | df-ral 2480 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵)) | |
| 11 | 9, 10 | bitr4i 187 | 1 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1362 = wceq 1364 ∈ wcel 2167 {cab 2182 ∀wral 2475 ∩ cin 3156 ∅c0 3450 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-dif 3159 df-in 3163 df-nul 3451 | 
| This theorem is referenced by: disjr 3500 disj1 3501 disjne 3504 f0rn0 5452 renfdisj 8086 fvinim0ffz 10317 xnn0nnen 10529 fxnn0nninf 10531 fprodsplitdc 11761 exmidunben 12643 dedekindeulemuub 14853 dedekindeulemlu 14857 dedekindicclemuub 14862 dedekindicclemlu 14866 ivthinclemdisj 14876 exmidsbthrlem 15666 | 
| Copyright terms: Public domain | W3C validator |