ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disj GIF version

Theorem disj 3483
Description: Two ways of saying that two classes are disjoint (have no members in common). (Contributed by NM, 17-Feb-2004.)
Assertion
Ref Expression
disj ((𝐴𝐵) = ∅ ↔ ∀𝑥𝐴 ¬ 𝑥𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem disj
StepHypRef Expression
1 df-in 3147 . . . 4 (𝐴𝐵) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
21eqeq1i 2195 . . 3 ((𝐴𝐵) = ∅ ↔ {𝑥 ∣ (𝑥𝐴𝑥𝐵)} = ∅)
3 abeq1 2297 . . 3 ({𝑥 ∣ (𝑥𝐴𝑥𝐵)} = ∅ ↔ ∀𝑥((𝑥𝐴𝑥𝐵) ↔ 𝑥 ∈ ∅))
4 imnan 691 . . . . 5 ((𝑥𝐴 → ¬ 𝑥𝐵) ↔ ¬ (𝑥𝐴𝑥𝐵))
5 noel 3438 . . . . . 6 ¬ 𝑥 ∈ ∅
65nbn 700 . . . . 5 (¬ (𝑥𝐴𝑥𝐵) ↔ ((𝑥𝐴𝑥𝐵) ↔ 𝑥 ∈ ∅))
74, 6bitr2i 185 . . . 4 (((𝑥𝐴𝑥𝐵) ↔ 𝑥 ∈ ∅) ↔ (𝑥𝐴 → ¬ 𝑥𝐵))
87albii 1480 . . 3 (∀𝑥((𝑥𝐴𝑥𝐵) ↔ 𝑥 ∈ ∅) ↔ ∀𝑥(𝑥𝐴 → ¬ 𝑥𝐵))
92, 3, 83bitri 206 . 2 ((𝐴𝐵) = ∅ ↔ ∀𝑥(𝑥𝐴 → ¬ 𝑥𝐵))
10 df-ral 2470 . 2 (∀𝑥𝐴 ¬ 𝑥𝐵 ↔ ∀𝑥(𝑥𝐴 → ¬ 𝑥𝐵))
119, 10bitr4i 187 1 ((𝐴𝐵) = ∅ ↔ ∀𝑥𝐴 ¬ 𝑥𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wal 1361   = wceq 1363  wcel 2158  {cab 2173  wral 2465  cin 3140  c0 3434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-v 2751  df-dif 3143  df-in 3147  df-nul 3435
This theorem is referenced by:  disjr  3484  disj1  3485  disjne  3488  f0rn0  5422  renfdisj  8031  fvinim0ffz  10255  fxnn0nninf  10452  fprodsplitdc  11618  exmidunben  12441  dedekindeulemuub  14391  dedekindeulemlu  14395  dedekindicclemuub  14400  dedekindicclemlu  14404  ivthinclemdisj  14414  exmidsbthrlem  15067
  Copyright terms: Public domain W3C validator