| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bdcin | GIF version | ||
| Description: The intersection of two bounded classes is bounded. (Contributed by BJ, 3-Oct-2019.) |
| Ref | Expression |
|---|---|
| bdcdif.1 | ⊢ BOUNDED 𝐴 |
| bdcdif.2 | ⊢ BOUNDED 𝐵 |
| Ref | Expression |
|---|---|
| bdcin | ⊢ BOUNDED (𝐴 ∩ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdcdif.1 | . . . . 5 ⊢ BOUNDED 𝐴 | |
| 2 | 1 | bdeli 15502 | . . . 4 ⊢ BOUNDED 𝑥 ∈ 𝐴 |
| 3 | bdcdif.2 | . . . . 5 ⊢ BOUNDED 𝐵 | |
| 4 | 3 | bdeli 15502 | . . . 4 ⊢ BOUNDED 𝑥 ∈ 𝐵 |
| 5 | 2, 4 | ax-bdan 15471 | . . 3 ⊢ BOUNDED (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) |
| 6 | 5 | bdcab 15505 | . 2 ⊢ BOUNDED {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} |
| 7 | df-in 3163 | . 2 ⊢ (𝐴 ∩ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} | |
| 8 | 6, 7 | bdceqir 15500 | 1 ⊢ BOUNDED (𝐴 ∩ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ∈ wcel 2167 {cab 2182 ∩ cin 3156 BOUNDED wbdc 15496 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 ax-bd0 15469 ax-bdan 15471 ax-bdsb 15478 |
| This theorem depends on definitions: df-bi 117 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-bdc 15497 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |