| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-un | GIF version | ||
| Description: Define the union of two classes. Definition 5.6 of [TakeutiZaring] p. 16. Contrast this operation with difference (𝐴 ∖ 𝐵) (df-dif 3159) and intersection (𝐴 ∩ 𝐵) (df-in 3163). (Contributed by NM, 23-Aug-1993.) |
| Ref | Expression |
|---|---|
| df-un | ⊢ (𝐴 ∪ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | 1, 2 | cun 3155 | . 2 class (𝐴 ∪ 𝐵) |
| 4 | vx | . . . . . 6 setvar 𝑥 | |
| 5 | 4 | cv 1363 | . . . . 5 class 𝑥 |
| 6 | 5, 1 | wcel 2167 | . . . 4 wff 𝑥 ∈ 𝐴 |
| 7 | 5, 2 | wcel 2167 | . . . 4 wff 𝑥 ∈ 𝐵 |
| 8 | 6, 7 | wo 709 | . . 3 wff (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) |
| 9 | 8, 4 | cab 2182 | . 2 class {𝑥 ∣ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)} |
| 10 | 3, 9 | wceq 1364 | 1 wff (𝐴 ∪ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)} |
| Colors of variables: wff set class |
| This definition is referenced by: elun 3305 nfun 3320 unipr 3854 iinuniss 4000 bdcun 15592 |
| Copyright terms: Public domain | W3C validator |