| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > df-un | GIF version | ||
| Description: Define the union of two classes. Definition 5.6 of [TakeutiZaring] p. 16. Contrast this operation with difference (𝐴 ∖ 𝐵) (df-dif 3159) and intersection (𝐴 ∩ 𝐵) (df-in 3163). (Contributed by NM, 23-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| df-un | ⊢ (𝐴 ∪ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)} | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | 1, 2 | cun 3155 | . 2 class (𝐴 ∪ 𝐵) | 
| 4 | vx | . . . . . 6 setvar 𝑥 | |
| 5 | 4 | cv 1363 | . . . . 5 class 𝑥 | 
| 6 | 5, 1 | wcel 2167 | . . . 4 wff 𝑥 ∈ 𝐴 | 
| 7 | 5, 2 | wcel 2167 | . . . 4 wff 𝑥 ∈ 𝐵 | 
| 8 | 6, 7 | wo 709 | . . 3 wff (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) | 
| 9 | 8, 4 | cab 2182 | . 2 class {𝑥 ∣ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)} | 
| 10 | 3, 9 | wceq 1364 | 1 wff (𝐴 ∪ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)} | 
| Colors of variables: wff set class | 
| This definition is referenced by: elun 3304 nfun 3319 unipr 3853 iinuniss 3999 bdcun 15508 | 
| Copyright terms: Public domain | W3C validator |