| Intuitionistic Logic Explorer Theorem List (p. 32 of 161) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | csbeq1d 3101 | Equality deduction for proper substitution into a class. (Contributed by NM, 3-Dec-2005.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑥⦌𝐶) | ||
| Theorem | csbid 3102 | Analog of sbid 1798 for proper substitution into a class. (Contributed by NM, 10-Nov-2005.) |
| ⊢ ⦋𝑥 / 𝑥⦌𝐴 = 𝐴 | ||
| Theorem | csbeq1a 3103 | Equality theorem for proper substitution into a class. (Contributed by NM, 10-Nov-2005.) |
| ⊢ (𝑥 = 𝐴 → 𝐵 = ⦋𝐴 / 𝑥⦌𝐵) | ||
| Theorem | csbco 3104* |
Composition law for chained substitutions into a class.
Use the weaker csbcow 3105 when possible. (Contributed by NM, 10-Nov-2005.) (New usage is discouraged.) |
| ⊢ ⦋𝐴 / 𝑦⦌⦋𝑦 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵 | ||
| Theorem | csbcow 3105* | Composition law for chained substitutions into a class. Version of csbco 3104 with a disjoint variable condition, which requires fewer axioms. (Contributed by NM, 10-Nov-2005.) (Revised by GG, 25-Aug-2024.) |
| ⊢ ⦋𝐴 / 𝑦⦌⦋𝑦 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵 | ||
| Theorem | csbtt 3106 | Substitution doesn't affect a constant 𝐵 (in which 𝑥 is not free). (Contributed by Mario Carneiro, 14-Oct-2016.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑥𝐵) → ⦋𝐴 / 𝑥⦌𝐵 = 𝐵) | ||
| Theorem | csbconstgf 3107 | Substitution doesn't affect a constant 𝐵 (in which 𝑥 is not free). (Contributed by NM, 10-Nov-2005.) |
| ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐵) | ||
| Theorem | csbconstg 3108* | Substitution doesn't affect a constant 𝐵 (in which 𝑥 is not free). csbconstgf 3107 with distinct variable requirement. (Contributed by Alan Sare, 22-Jul-2012.) |
| ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐵) | ||
| Theorem | sbcel12g 3109 | Distribute proper substitution through a membership relation. (Contributed by NM, 10-Nov-2005.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 ∈ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ∈ ⦋𝐴 / 𝑥⦌𝐶)) | ||
| Theorem | sbceqg 3110 | Distribute proper substitution through an equality relation. (Contributed by NM, 10-Nov-2005.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶)) | ||
| Theorem | sbcnel12g 3111 | Distribute proper substitution through negated membership. (Contributed by Andrew Salmon, 18-Jun-2011.) |
| ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 ∉ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ∉ ⦋𝐴 / 𝑥⦌𝐶)) | ||
| Theorem | sbcne12g 3112 | Distribute proper substitution through an inequality. (Contributed by Andrew Salmon, 18-Jun-2011.) |
| ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 ≠ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ≠ ⦋𝐴 / 𝑥⦌𝐶)) | ||
| Theorem | sbcel1g 3113* | Move proper substitution in and out of a membership relation. Note that the scope of [𝐴 / 𝑥] is the wff 𝐵 ∈ 𝐶, whereas the scope of ⦋𝐴 / 𝑥⦌ is the class 𝐵. (Contributed by NM, 10-Nov-2005.) |
| ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 ∈ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ∈ 𝐶)) | ||
| Theorem | sbceq1g 3114* | Move proper substitution to first argument of an equality. (Contributed by NM, 30-Nov-2005.) |
| ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶)) | ||
| Theorem | sbcel2g 3115* | Move proper substitution in and out of a membership relation. (Contributed by NM, 14-Nov-2005.) |
| ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 ∈ 𝐶 ↔ 𝐵 ∈ ⦋𝐴 / 𝑥⦌𝐶)) | ||
| Theorem | sbceq2g 3116* | Move proper substitution to second argument of an equality. (Contributed by NM, 30-Nov-2005.) |
| ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶 ↔ 𝐵 = ⦋𝐴 / 𝑥⦌𝐶)) | ||
| Theorem | csbcomg 3117* | Commutative law for double substitution into a class. (Contributed by NM, 14-Nov-2005.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐶 = ⦋𝐵 / 𝑦⦌⦋𝐴 / 𝑥⦌𝐶) | ||
| Theorem | csbeq2 3118 | Substituting into equivalent classes gives equivalent results. (Contributed by Giovanni Mascellani, 9-Apr-2018.) |
| ⊢ (∀𝑥 𝐵 = 𝐶 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) | ||
| Theorem | csbeq2d 3119 | Formula-building deduction for class substitution. (Contributed by NM, 22-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) | ||
| Theorem | csbeq2dv 3120* | Formula-building deduction for class substitution. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.) |
| ⊢ (𝜑 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) | ||
| Theorem | csbeq2i 3121 | Formula-building inference for class substitution. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.) |
| ⊢ 𝐵 = 𝐶 ⇒ ⊢ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶 | ||
| Theorem | csbvarg 3122 | The proper substitution of a class for setvar variable results in the class (if the class exists). (Contributed by NM, 10-Nov-2005.) |
| ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝑥 = 𝐴) | ||
| Theorem | sbccsbg 3123* | Substitution into a wff expressed in terms of substitution into a class. (Contributed by NM, 15-Aug-2007.) |
| ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝑦 ∈ ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝜑})) | ||
| Theorem | sbccsb2g 3124 | Substitution into a wff expressed in using substitution into a class. (Contributed by NM, 27-Nov-2005.) |
| ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ ⦋𝐴 / 𝑥⦌{𝑥 ∣ 𝜑})) | ||
| Theorem | nfcsb1d 3125 | Bound-variable hypothesis builder for substitution into a class. (Contributed by Mario Carneiro, 12-Oct-2016.) |
| ⊢ (𝜑 → Ⅎ𝑥𝐴) ⇒ ⊢ (𝜑 → Ⅎ𝑥⦋𝐴 / 𝑥⦌𝐵) | ||
| Theorem | nfcsb1 3126 | Bound-variable hypothesis builder for substitution into a class. (Contributed by Mario Carneiro, 12-Oct-2016.) |
| ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥⦋𝐴 / 𝑥⦌𝐵 | ||
| Theorem | nfcsb1v 3127* | Bound-variable hypothesis builder for substitution into a class. (Contributed by NM, 17-Aug-2006.) (Revised by Mario Carneiro, 12-Oct-2016.) |
| ⊢ Ⅎ𝑥⦋𝐴 / 𝑥⦌𝐵 | ||
| Theorem | nfsbcdw 3128* | Version of nfsbcd 3019 with a disjoint variable condition. (Contributed by NM, 23-Nov-2005.) (Revised by GG, 10-Jan-2024.) |
| ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝐴) & ⊢ (𝜑 → Ⅎ𝑥𝜓) ⇒ ⊢ (𝜑 → Ⅎ𝑥[𝐴 / 𝑦]𝜓) | ||
| Theorem | nfsbcw 3129* | Bound-variable hypothesis builder for class substitution. Version of nfsbc 3020 with a disjoint variable condition, which in the future may make it possible to reduce axiom usage. (Contributed by NM, 7-Sep-2014.) (Revised by GG, 10-Jan-2024.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ Ⅎ𝑥[𝐴 / 𝑦]𝜑 | ||
| Theorem | nfcsbd 3130 | Deduction version of nfcsb 3132. (Contributed by NM, 21-Nov-2005.) (Revised by Mario Carneiro, 12-Oct-2016.) |
| ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝐴) & ⊢ (𝜑 → Ⅎ𝑥𝐵) ⇒ ⊢ (𝜑 → Ⅎ𝑥⦋𝐴 / 𝑦⦌𝐵) | ||
| Theorem | nfcsbw 3131* | Bound-variable hypothesis builder for substitution into a class. Version of nfcsb 3132 with a disjoint variable condition. (Contributed by Mario Carneiro, 12-Oct-2016.) (Revised by GG, 10-Jan-2024.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥⦋𝐴 / 𝑦⦌𝐵 | ||
| Theorem | nfcsb 3132 | Bound-variable hypothesis builder for substitution into a class. (Contributed by Mario Carneiro, 12-Oct-2016.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥⦋𝐴 / 𝑦⦌𝐵 | ||
| Theorem | csbhypf 3133* | Introduce an explicit substitution into an implicit substitution hypothesis. See sbhypf 2823 for class substitution version. (Contributed by NM, 19-Dec-2008.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐶 & ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) ⇒ ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐵 = 𝐶) | ||
| Theorem | csbiebt 3134* | Conversion of implicit substitution to explicit substitution into a class. (Closed theorem version of csbiegf 3138.) (Contributed by NM, 11-Nov-2005.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑥𝐶) → (∀𝑥(𝑥 = 𝐴 → 𝐵 = 𝐶) ↔ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶)) | ||
| Theorem | csbiedf 3135* | Conversion of implicit substitution to explicit substitution into a class. (Contributed by Mario Carneiro, 13-Oct-2016.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝐶) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐶) | ||
| Theorem | csbieb 3136* | Bidirectional conversion between an implicit class substitution hypothesis 𝑥 = 𝐴 → 𝐵 = 𝐶 and its explicit substitution equivalent. (Contributed by NM, 2-Mar-2008.) |
| ⊢ 𝐴 ∈ V & ⊢ Ⅎ𝑥𝐶 ⇒ ⊢ (∀𝑥(𝑥 = 𝐴 → 𝐵 = 𝐶) ↔ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶) | ||
| Theorem | csbiebg 3137* | Bidirectional conversion between an implicit class substitution hypothesis 𝑥 = 𝐴 → 𝐵 = 𝐶 and its explicit substitution equivalent. (Contributed by NM, 24-Mar-2013.) (Revised by Mario Carneiro, 11-Dec-2016.) |
| ⊢ Ⅎ𝑥𝐶 ⇒ ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝐵 = 𝐶) ↔ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶)) | ||
| Theorem | csbiegf 3138* | Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 11-Nov-2005.) (Revised by Mario Carneiro, 13-Oct-2016.) |
| ⊢ (𝐴 ∈ 𝑉 → Ⅎ𝑥𝐶) & ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) ⇒ ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐶) | ||
| Theorem | csbief 3139* | Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 26-Nov-2005.) (Revised by Mario Carneiro, 13-Oct-2016.) |
| ⊢ 𝐴 ∈ V & ⊢ Ⅎ𝑥𝐶 & ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) ⇒ ⊢ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶 | ||
| Theorem | csbie 3140* | Conversion of implicit substitution to explicit substitution into a class. (Contributed by AV, 2-Dec-2019.) |
| ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) ⇒ ⊢ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶 | ||
| Theorem | csbied 3141* | Conversion of implicit substitution to explicit substitution into a class. (Contributed by Mario Carneiro, 2-Dec-2014.) (Revised by Mario Carneiro, 13-Oct-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐶) | ||
| Theorem | csbied2 3142* | Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐶 = 𝐷) | ||
| Theorem | csbie2t 3143* | Conversion of implicit substitution to explicit substitution into a class (closed form of csbie2 3144). (Contributed by NM, 3-Sep-2007.) (Revised by Mario Carneiro, 13-Oct-2016.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷) → ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐶 = 𝐷) | ||
| Theorem | csbie2 3144* | Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 27-Aug-2007.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷) ⇒ ⊢ ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐶 = 𝐷 | ||
| Theorem | csbie2g 3145* | Conversion of implicit substitution to explicit class substitution. This version of sbcie 3034 avoids a disjointness condition on 𝑥 and 𝐴 by substituting twice. (Contributed by Mario Carneiro, 11-Nov-2016.) |
| ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) & ⊢ (𝑦 = 𝐴 → 𝐶 = 𝐷) ⇒ ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐷) | ||
| Theorem | sbcnestgf 3146 | Nest the composition of two substitutions. (Contributed by Mario Carneiro, 11-Nov-2016.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑦Ⅎ𝑥𝜑) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦]𝜑)) | ||
| Theorem | csbnestgf 3147 | Nest the composition of two substitutions. (Contributed by NM, 23-Nov-2005.) (Proof shortened by Mario Carneiro, 10-Nov-2016.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑦Ⅎ𝑥𝐶) → ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐶 = ⦋⦋𝐴 / 𝑥⦌𝐵 / 𝑦⦌𝐶) | ||
| Theorem | sbcnestg 3148* | Nest the composition of two substitutions. (Contributed by NM, 27-Nov-2005.) (Proof shortened by Mario Carneiro, 11-Nov-2016.) |
| ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦]𝜑)) | ||
| Theorem | csbnestg 3149* | Nest the composition of two substitutions. (Contributed by NM, 23-Nov-2005.) (Proof shortened by Mario Carneiro, 10-Nov-2016.) |
| ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐶 = ⦋⦋𝐴 / 𝑥⦌𝐵 / 𝑦⦌𝐶) | ||
| Theorem | csbnest1g 3150 | Nest the composition of two substitutions. (Contributed by NM, 23-May-2006.) (Proof shortened by Mario Carneiro, 11-Nov-2016.) |
| ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑥⦌𝐶 = ⦋⦋𝐴 / 𝑥⦌𝐵 / 𝑥⦌𝐶) | ||
| Theorem | csbidmg 3151* | Idempotent law for class substitutions. (Contributed by NM, 1-Mar-2008.) |
| ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵) | ||
| Theorem | sbcco3g 3152* | Composition of two substitutions. (Contributed by NM, 27-Nov-2005.) (Revised by Mario Carneiro, 11-Nov-2016.) |
| ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) ⇒ ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [𝐶 / 𝑦]𝜑)) | ||
| Theorem | csbco3g 3153* | Composition of two class substitutions. (Contributed by NM, 27-Nov-2005.) (Revised by Mario Carneiro, 11-Nov-2016.) |
| ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) ⇒ ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐷 = ⦋𝐶 / 𝑦⦌𝐷) | ||
| Theorem | rspcsbela 3154* | Special case related to rspsbc 3082. (Contributed by NM, 10-Dec-2005.) (Proof shortened by Eric Schmidt, 17-Jan-2007.) |
| ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 𝐶 ∈ 𝐷) → ⦋𝐴 / 𝑥⦌𝐶 ∈ 𝐷) | ||
| Theorem | sbnfc2 3155* | Two ways of expressing "𝑥 is (effectively) not free in 𝐴." (Contributed by Mario Carneiro, 14-Oct-2016.) |
| ⊢ (Ⅎ𝑥𝐴 ↔ ∀𝑦∀𝑧⦋𝑦 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴) | ||
| Theorem | csbabg 3156* | Move substitution into a class abstraction. (Contributed by NM, 13-Dec-2005.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
| ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝜑} = {𝑦 ∣ [𝐴 / 𝑥]𝜑}) | ||
| Theorem | cbvralcsf 3157 | A more general version of cbvralf 2731 that doesn't require 𝐴 and 𝐵 to be distinct from 𝑥 or 𝑦. Changes bound variables using implicit substitution. (Contributed by Andrew Salmon, 13-Jul-2011.) |
| ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐵 𝜓) | ||
| Theorem | cbvrexcsf 3158 | A more general version of cbvrexf 2732 that has no distinct variable restrictions. Changes bound variables using implicit substitution. (Contributed by Andrew Salmon, 13-Jul-2011.) (Proof shortened by Mario Carneiro, 7-Dec-2014.) |
| ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐵 𝜓) | ||
| Theorem | cbvreucsf 3159 | A more general version of cbvreuv 2741 that has no distinct variable rextrictions. Changes bound variables using implicit substitution. (Contributed by Andrew Salmon, 13-Jul-2011.) |
| ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑦 ∈ 𝐵 𝜓) | ||
| Theorem | cbvrabcsf 3160 | A more general version of cbvrab 2771 with no distinct variable restrictions. (Contributed by Andrew Salmon, 13-Jul-2011.) |
| ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∈ 𝐵 ∣ 𝜓} | ||
| Theorem | cbvralv2 3161* | Rule used to change the bound variable in a restricted universal quantifier with implicit substitution which also changes the quantifier domain. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) & ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) ⇒ ⊢ (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑦 ∈ 𝐵 𝜒) | ||
| Theorem | cbvrexv2 3162* | Rule used to change the bound variable in a restricted existential quantifier with implicit substitution which also changes the quantifier domain. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) & ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑦 ∈ 𝐵 𝜒) | ||
| Theorem | rspc2vd 3163* | Deduction version of 2-variable restricted specialization, using implicit substitution. Notice that the class 𝐷 for the second set variable 𝑦 may depend on the first set variable 𝑥. (Contributed by AV, 29-Mar-2021.) |
| ⊢ (𝑥 = 𝐴 → (𝜃 ↔ 𝜒)) & ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) & ⊢ (𝜑 → 𝐴 ∈ 𝐶) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐷 = 𝐸) & ⊢ (𝜑 → 𝐵 ∈ 𝐸) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜃 → 𝜓)) | ||
| Syntax | cdif 3164 | Extend class notation to include class difference (read: "𝐴 minus 𝐵"). |
| class (𝐴 ∖ 𝐵) | ||
| Syntax | cun 3165 | Extend class notation to include union of two classes (read: "𝐴 union 𝐵"). |
| class (𝐴 ∪ 𝐵) | ||
| Syntax | cin 3166 | Extend class notation to include the intersection of two classes (read: "𝐴 intersect 𝐵"). |
| class (𝐴 ∩ 𝐵) | ||
| Syntax | wss 3167 | Extend wff notation to include the subclass relation. This is read "𝐴 is a subclass of 𝐵 " or "𝐵 includes 𝐴". When 𝐴 exists as a set, it is also read "𝐴 is a subset of 𝐵". |
| wff 𝐴 ⊆ 𝐵 | ||
| Theorem | difjust 3168* | Soundness justification theorem for df-dif 3169. (Contributed by Rodolfo Medina, 27-Apr-2010.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
| ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵)} | ||
| Definition | df-dif 3169* | Define class difference, also called relative complement. Definition 5.12 of [TakeutiZaring] p. 20. Contrast this operation with union (𝐴 ∪ 𝐵) (df-un 3171) and intersection (𝐴 ∩ 𝐵) (df-in 3173). Several notations are used in the literature; we chose the ∖ convention used in Definition 5.3 of [Eisenberg] p. 67 instead of the more common minus sign to reserve the latter for later use in, e.g., arithmetic. We will use the terminology "𝐴 excludes 𝐵 " to mean 𝐴 ∖ 𝐵. We will use "𝐵 is removed from 𝐴 " to mean 𝐴 ∖ {𝐵} i.e. the removal of an element or equivalently the exclusion of a singleton. (Contributed by NM, 29-Apr-1994.) |
| ⊢ (𝐴 ∖ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)} | ||
| Theorem | unjust 3170* | Soundness justification theorem for df-un 3171. (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
| ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝐵)} | ||
| Definition | df-un 3171* | Define the union of two classes. Definition 5.6 of [TakeutiZaring] p. 16. Contrast this operation with difference (𝐴 ∖ 𝐵) (df-dif 3169) and intersection (𝐴 ∩ 𝐵) (df-in 3173). (Contributed by NM, 23-Aug-1993.) |
| ⊢ (𝐴 ∪ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)} | ||
| Theorem | injust 3172* | Soundness justification theorem for df-in 3173. (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
| ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} | ||
| Definition | df-in 3173* | Define the intersection of two classes. Definition 5.6 of [TakeutiZaring] p. 16. Contrast this operation with union (𝐴 ∪ 𝐵) (df-un 3171) and difference (𝐴 ∖ 𝐵) (df-dif 3169). (Contributed by NM, 29-Apr-1994.) |
| ⊢ (𝐴 ∩ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} | ||
| Theorem | dfin5 3174* | Alternate definition for the intersection of two classes. (Contributed by NM, 6-Jul-2005.) |
| ⊢ (𝐴 ∩ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} | ||
| Theorem | dfdif2 3175* | Alternate definition of class difference. (Contributed by NM, 25-Mar-2004.) |
| ⊢ (𝐴 ∖ 𝐵) = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐵} | ||
| Theorem | eldif 3176 | Expansion of membership in a class difference. (Contributed by NM, 29-Apr-1994.) |
| ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶)) | ||
| Theorem | eldifd 3177 | If a class is in one class and not another, it is also in their difference. One-way deduction form of eldif 3176. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ∈ (𝐵 ∖ 𝐶)) | ||
| Theorem | eldifad 3178 | If a class is in the difference of two classes, it is also in the minuend. One-way deduction form of eldif 3176. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ (𝐵 ∖ 𝐶)) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝐵) | ||
| Theorem | eldifbd 3179 | If a class is in the difference of two classes, it is not in the subtrahend. One-way deduction form of eldif 3176. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ (𝐵 ∖ 𝐶)) ⇒ ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐶) | ||
| Definition | df-ss 3180 | Define the subclass relationship. Exercise 9 of [TakeutiZaring] p. 18. Note that 𝐴 ⊆ 𝐴 (proved in ssid 3214). For a more traditional definition, but requiring a dummy variable, see ssalel 3182. Other possible definitions are given by dfss3 3183, ssequn1 3344, ssequn2 3347, and sseqin2 3393. (Contributed by NM, 27-Apr-1994.) |
| ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) | ||
| Theorem | dfss 3181 | Variant of subclass definition df-ss 3180. (Contributed by NM, 3-Sep-2004.) |
| ⊢ (𝐴 ⊆ 𝐵 ↔ 𝐴 = (𝐴 ∩ 𝐵)) | ||
| Theorem | ssalel 3182* | Alternate definition of the subclass relationship between two classes. Definition 5.9 of [TakeutiZaring] p. 17. (Contributed by NM, 8-Jan-2002.) |
| ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | ||
| Theorem | dfss3 3183* | Alternate definition of subclass relationship. (Contributed by NM, 14-Oct-1999.) |
| ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) | ||
| Theorem | dfss2 3184 | Alternate definition of the subclass relationship between two classes. Exercise 9 of [TakeutiZaring] p. 18. This is another name for df-ss 3180 which is more consistent with the naming in the Metamath Proof Explorer. (Contributed by NM, 27-Apr-1994.) |
| ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) | ||
| Theorem | dfss2f 3185 | Equivalence for subclass relation, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 3-Jul-1994.) (Revised by Andrew Salmon, 27-Aug-2011.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | ||
| Theorem | dfss3f 3186 | Equivalence for subclass relation, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 20-Mar-2004.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) | ||
| Theorem | nfss 3187 | If 𝑥 is not free in 𝐴 and 𝐵, it is not free in 𝐴 ⊆ 𝐵. (Contributed by NM, 27-Dec-1996.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥 𝐴 ⊆ 𝐵 | ||
| Theorem | ssel 3188 | Membership relationships follow from a subclass relationship. (Contributed by NM, 5-Aug-1993.) |
| ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵)) | ||
| Theorem | ssel2 3189 | Membership relationships follow from a subclass relationship. (Contributed by NM, 7-Jun-2004.) |
| ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ∈ 𝐴) → 𝐶 ∈ 𝐵) | ||
| Theorem | sseli 3190 | Membership inference from subclass relationship. (Contributed by NM, 5-Aug-1993.) |
| ⊢ 𝐴 ⊆ 𝐵 ⇒ ⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵) | ||
| Theorem | sselii 3191 | Membership inference from subclass relationship. (Contributed by NM, 31-May-1999.) |
| ⊢ 𝐴 ⊆ 𝐵 & ⊢ 𝐶 ∈ 𝐴 ⇒ ⊢ 𝐶 ∈ 𝐵 | ||
| Theorem | sselid 3192 | Membership inference from subclass relationship. (Contributed by NM, 25-Jun-2014.) |
| ⊢ 𝐴 ⊆ 𝐵 & ⊢ (𝜑 → 𝐶 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝐶 ∈ 𝐵) | ||
| Theorem | sseld 3193 | Membership deduction from subclass relationship. (Contributed by NM, 15-Nov-1995.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵)) | ||
| Theorem | sselda 3194 | Membership deduction from subclass relationship. (Contributed by NM, 26-Jun-2014.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ ((𝜑 ∧ 𝐶 ∈ 𝐴) → 𝐶 ∈ 𝐵) | ||
| Theorem | sseldd 3195 | Membership inference from subclass relationship. (Contributed by NM, 14-Dec-2004.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝐶 ∈ 𝐵) | ||
| Theorem | ssneld 3196 | If a class is not in another class, it is also not in a subclass of that class. Deduction form. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (¬ 𝐶 ∈ 𝐵 → ¬ 𝐶 ∈ 𝐴)) | ||
| Theorem | ssneldd 3197 | If an element is not in a class, it is also not in a subclass of that class. Deduction form. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) ⇒ ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) | ||
| Theorem | ssriv 3198* | Inference based on subclass definition. (Contributed by NM, 5-Aug-1993.) |
| ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ⇒ ⊢ 𝐴 ⊆ 𝐵 | ||
| Theorem | ssrd 3199 | Deduction based on subclass definition. (Contributed by Thierry Arnoux, 8-Mar-2017.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | ||
| Theorem | ssrdv 3200* | Deduction based on subclass definition. (Contributed by NM, 15-Nov-1995.) |
| ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |