HomeHome Intuitionistic Logic Explorer
Theorem List (p. 32 of 142)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 3101-3200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremcsbnestgf 3101 Nest the composition of two substitutions. (Contributed by NM, 23-Nov-2005.) (Proof shortened by Mario Carneiro, 10-Nov-2016.)
((𝐴𝑉 ∧ ∀𝑦𝑥𝐶) → 𝐴 / 𝑥𝐵 / 𝑦𝐶 = 𝐴 / 𝑥𝐵 / 𝑦𝐶)
 
Theoremsbcnestg 3102* Nest the composition of two substitutions. (Contributed by NM, 27-Nov-2005.) (Proof shortened by Mario Carneiro, 11-Nov-2016.)
(𝐴𝑉 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑦]𝜑))
 
Theoremcsbnestg 3103* Nest the composition of two substitutions. (Contributed by NM, 23-Nov-2005.) (Proof shortened by Mario Carneiro, 10-Nov-2016.)
(𝐴𝑉𝐴 / 𝑥𝐵 / 𝑦𝐶 = 𝐴 / 𝑥𝐵 / 𝑦𝐶)
 
Theoremcsbnest1g 3104 Nest the composition of two substitutions. (Contributed by NM, 23-May-2006.) (Proof shortened by Mario Carneiro, 11-Nov-2016.)
(𝐴𝑉𝐴 / 𝑥𝐵 / 𝑥𝐶 = 𝐴 / 𝑥𝐵 / 𝑥𝐶)
 
Theoremcsbidmg 3105* Idempotent law for class substitutions. (Contributed by NM, 1-Mar-2008.)
(𝐴𝑉𝐴 / 𝑥𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐵)
 
Theoremsbcco3g 3106* Composition of two substitutions. (Contributed by NM, 27-Nov-2005.) (Revised by Mario Carneiro, 11-Nov-2016.)
(𝑥 = 𝐴𝐵 = 𝐶)       (𝐴𝑉 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐶 / 𝑦]𝜑))
 
Theoremcsbco3g 3107* Composition of two class substitutions. (Contributed by NM, 27-Nov-2005.) (Revised by Mario Carneiro, 11-Nov-2016.)
(𝑥 = 𝐴𝐵 = 𝐶)       (𝐴𝑉𝐴 / 𝑥𝐵 / 𝑦𝐷 = 𝐶 / 𝑦𝐷)
 
Theoremrspcsbela 3108* Special case related to rspsbc 3037. (Contributed by NM, 10-Dec-2005.) (Proof shortened by Eric Schmidt, 17-Jan-2007.)
((𝐴𝐵 ∧ ∀𝑥𝐵 𝐶𝐷) → 𝐴 / 𝑥𝐶𝐷)
 
Theoremsbnfc2 3109* Two ways of expressing "𝑥 is (effectively) not free in 𝐴." (Contributed by Mario Carneiro, 14-Oct-2016.)
(𝑥𝐴 ↔ ∀𝑦𝑧𝑦 / 𝑥𝐴 = 𝑧 / 𝑥𝐴)
 
Theoremcsbabg 3110* Move substitution into a class abstraction. (Contributed by NM, 13-Dec-2005.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
(𝐴𝑉𝐴 / 𝑥{𝑦𝜑} = {𝑦[𝐴 / 𝑥]𝜑})
 
Theoremcbvralcsf 3111 A more general version of cbvralf 2689 that doesn't require 𝐴 and 𝐵 to be distinct from 𝑥 or 𝑦. Changes bound variables using implicit substitution. (Contributed by Andrew Salmon, 13-Jul-2011.)
𝑦𝐴    &   𝑥𝐵    &   𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦𝐴 = 𝐵)    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥𝐴 𝜑 ↔ ∀𝑦𝐵 𝜓)
 
Theoremcbvrexcsf 3112 A more general version of cbvrexf 2690 that has no distinct variable restrictions. Changes bound variables using implicit substitution. (Contributed by Andrew Salmon, 13-Jul-2011.) (Proof shortened by Mario Carneiro, 7-Dec-2014.)
𝑦𝐴    &   𝑥𝐵    &   𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦𝐴 = 𝐵)    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝐵 𝜓)
 
Theoremcbvreucsf 3113 A more general version of cbvreuv 2698 that has no distinct variable rextrictions. Changes bound variables using implicit substitution. (Contributed by Andrew Salmon, 13-Jul-2011.)
𝑦𝐴    &   𝑥𝐵    &   𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦𝐴 = 𝐵)    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∃!𝑥𝐴 𝜑 ↔ ∃!𝑦𝐵 𝜓)
 
Theoremcbvrabcsf 3114 A more general version of cbvrab 2728 with no distinct variable restrictions. (Contributed by Andrew Salmon, 13-Jul-2011.)
𝑦𝐴    &   𝑥𝐵    &   𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦𝐴 = 𝐵)    &   (𝑥 = 𝑦 → (𝜑𝜓))       {𝑥𝐴𝜑} = {𝑦𝐵𝜓}
 
Theoremcbvralv2 3115* Rule used to change the bound variable in a restricted universal quantifier with implicit substitution which also changes the quantifier domain. (Contributed by David Moews, 1-May-2017.)
(𝑥 = 𝑦 → (𝜓𝜒))    &   (𝑥 = 𝑦𝐴 = 𝐵)       (∀𝑥𝐴 𝜓 ↔ ∀𝑦𝐵 𝜒)
 
Theoremcbvrexv2 3116* Rule used to change the bound variable in a restricted existential quantifier with implicit substitution which also changes the quantifier domain. (Contributed by David Moews, 1-May-2017.)
(𝑥 = 𝑦 → (𝜓𝜒))    &   (𝑥 = 𝑦𝐴 = 𝐵)       (∃𝑥𝐴 𝜓 ↔ ∃𝑦𝐵 𝜒)
 
Theoremrspc2vd 3117* Deduction version of 2-variable restricted specialization, using implicit substitution. Notice that the class 𝐷 for the second set variable 𝑦 may depend on the first set variable 𝑥. (Contributed by AV, 29-Mar-2021.)
(𝑥 = 𝐴 → (𝜃𝜒))    &   (𝑦 = 𝐵 → (𝜒𝜓))    &   (𝜑𝐴𝐶)    &   ((𝜑𝑥 = 𝐴) → 𝐷 = 𝐸)    &   (𝜑𝐵𝐸)       (𝜑 → (∀𝑥𝐶𝑦𝐷 𝜃𝜓))
 
2.1.11  Define basic set operations and relations
 
Syntaxcdif 3118 Extend class notation to include class difference (read: "𝐴 minus 𝐵").
class (𝐴𝐵)
 
Syntaxcun 3119 Extend class notation to include union of two classes (read: "𝐴 union 𝐵").
class (𝐴𝐵)
 
Syntaxcin 3120 Extend class notation to include the intersection of two classes (read: "𝐴 intersect 𝐵").
class (𝐴𝐵)
 
Syntaxwss 3121 Extend wff notation to include the subclass relation. This is read "𝐴 is a subclass of 𝐵 " or "𝐵 includes 𝐴". When 𝐴 exists as a set, it is also read "𝐴 is a subset of 𝐵".
wff 𝐴𝐵
 
Theoremdifjust 3122* Soundness justification theorem for df-dif 3123. (Contributed by Rodolfo Medina, 27-Apr-2010.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
{𝑥 ∣ (𝑥𝐴 ∧ ¬ 𝑥𝐵)} = {𝑦 ∣ (𝑦𝐴 ∧ ¬ 𝑦𝐵)}
 
Definitiondf-dif 3123* Define class difference, also called relative complement. Definition 5.12 of [TakeutiZaring] p. 20. Contrast this operation with union (𝐴𝐵) (df-un 3125) and intersection (𝐴𝐵) (df-in 3127). Several notations are used in the literature; we chose the convention used in Definition 5.3 of [Eisenberg] p. 67 instead of the more common minus sign to reserve the latter for later use in, e.g., arithmetic. We will use the terminology "𝐴 excludes 𝐵 " to mean 𝐴𝐵. We will use "𝐵 is removed from 𝐴 " to mean 𝐴 ∖ {𝐵} i.e. the removal of an element or equivalently the exclusion of a singleton. (Contributed by NM, 29-Apr-1994.)
(𝐴𝐵) = {𝑥 ∣ (𝑥𝐴 ∧ ¬ 𝑥𝐵)}
 
Theoremunjust 3124* Soundness justification theorem for df-un 3125. (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
{𝑥 ∣ (𝑥𝐴𝑥𝐵)} = {𝑦 ∣ (𝑦𝐴𝑦𝐵)}
 
Definitiondf-un 3125* Define the union of two classes. Definition 5.6 of [TakeutiZaring] p. 16. Contrast this operation with difference (𝐴𝐵) (df-dif 3123) and intersection (𝐴𝐵) (df-in 3127). (Contributed by NM, 23-Aug-1993.)
(𝐴𝐵) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
 
Theoreminjust 3126* Soundness justification theorem for df-in 3127. (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
{𝑥 ∣ (𝑥𝐴𝑥𝐵)} = {𝑦 ∣ (𝑦𝐴𝑦𝐵)}
 
Definitiondf-in 3127* Define the intersection of two classes. Definition 5.6 of [TakeutiZaring] p. 16. Contrast this operation with union (𝐴𝐵) (df-un 3125) and difference (𝐴𝐵) (df-dif 3123). (Contributed by NM, 29-Apr-1994.)
(𝐴𝐵) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
 
Theoremdfin5 3128* Alternate definition for the intersection of two classes. (Contributed by NM, 6-Jul-2005.)
(𝐴𝐵) = {𝑥𝐴𝑥𝐵}
 
Theoremdfdif2 3129* Alternate definition of class difference. (Contributed by NM, 25-Mar-2004.)
(𝐴𝐵) = {𝑥𝐴 ∣ ¬ 𝑥𝐵}
 
Theoremeldif 3130 Expansion of membership in a class difference. (Contributed by NM, 29-Apr-1994.)
(𝐴 ∈ (𝐵𝐶) ↔ (𝐴𝐵 ∧ ¬ 𝐴𝐶))
 
Theoremeldifd 3131 If a class is in one class and not another, it is also in their difference. One-way deduction form of eldif 3130. (Contributed by David Moews, 1-May-2017.)
(𝜑𝐴𝐵)    &   (𝜑 → ¬ 𝐴𝐶)       (𝜑𝐴 ∈ (𝐵𝐶))
 
Theoremeldifad 3132 If a class is in the difference of two classes, it is also in the minuend. One-way deduction form of eldif 3130. (Contributed by David Moews, 1-May-2017.)
(𝜑𝐴 ∈ (𝐵𝐶))       (𝜑𝐴𝐵)
 
Theoremeldifbd 3133 If a class is in the difference of two classes, it is not in the subtrahend. One-way deduction form of eldif 3130. (Contributed by David Moews, 1-May-2017.)
(𝜑𝐴 ∈ (𝐵𝐶))       (𝜑 → ¬ 𝐴𝐶)
 
2.1.12  Subclasses and subsets
 
Definitiondf-ss 3134 Define the subclass relationship. Exercise 9 of [TakeutiZaring] p. 18. Note that 𝐴𝐴 (proved in ssid 3167). For a more traditional definition, but requiring a dummy variable, see dfss2 3136. Other possible definitions are given by dfss3 3137, ssequn1 3297, ssequn2 3300, and sseqin2 3346. (Contributed by NM, 27-Apr-1994.)
(𝐴𝐵 ↔ (𝐴𝐵) = 𝐴)
 
Theoremdfss 3135 Variant of subclass definition df-ss 3134. (Contributed by NM, 3-Sep-2004.)
(𝐴𝐵𝐴 = (𝐴𝐵))
 
Theoremdfss2 3136* Alternate definition of the subclass relationship between two classes. Definition 5.9 of [TakeutiZaring] p. 17. (Contributed by NM, 8-Jan-2002.)
(𝐴𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
 
Theoremdfss3 3137* Alternate definition of subclass relationship. (Contributed by NM, 14-Oct-1999.)
(𝐴𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)
 
Theoremdfss2f 3138 Equivalence for subclass relation, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 3-Jul-1994.) (Revised by Andrew Salmon, 27-Aug-2011.)
𝑥𝐴    &   𝑥𝐵       (𝐴𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
 
Theoremdfss3f 3139 Equivalence for subclass relation, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 20-Mar-2004.)
𝑥𝐴    &   𝑥𝐵       (𝐴𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)
 
Theoremnfss 3140 If 𝑥 is not free in 𝐴 and 𝐵, it is not free in 𝐴𝐵. (Contributed by NM, 27-Dec-1996.)
𝑥𝐴    &   𝑥𝐵       𝑥 𝐴𝐵
 
Theoremssel 3141 Membership relationships follow from a subclass relationship. (Contributed by NM, 5-Aug-1993.)
(𝐴𝐵 → (𝐶𝐴𝐶𝐵))
 
Theoremssel2 3142 Membership relationships follow from a subclass relationship. (Contributed by NM, 7-Jun-2004.)
((𝐴𝐵𝐶𝐴) → 𝐶𝐵)
 
Theoremsseli 3143 Membership inference from subclass relationship. (Contributed by NM, 5-Aug-1993.)
𝐴𝐵       (𝐶𝐴𝐶𝐵)
 
Theoremsselii 3144 Membership inference from subclass relationship. (Contributed by NM, 31-May-1999.)
𝐴𝐵    &   𝐶𝐴       𝐶𝐵
 
Theoremsselid 3145 Membership inference from subclass relationship. (Contributed by NM, 25-Jun-2014.)
𝐴𝐵    &   (𝜑𝐶𝐴)       (𝜑𝐶𝐵)
 
Theoremsseld 3146 Membership deduction from subclass relationship. (Contributed by NM, 15-Nov-1995.)
(𝜑𝐴𝐵)       (𝜑 → (𝐶𝐴𝐶𝐵))
 
Theoremsselda 3147 Membership deduction from subclass relationship. (Contributed by NM, 26-Jun-2014.)
(𝜑𝐴𝐵)       ((𝜑𝐶𝐴) → 𝐶𝐵)
 
Theoremsseldd 3148 Membership inference from subclass relationship. (Contributed by NM, 14-Dec-2004.)
(𝜑𝐴𝐵)    &   (𝜑𝐶𝐴)       (𝜑𝐶𝐵)
 
Theoremssneld 3149 If a class is not in another class, it is also not in a subclass of that class. Deduction form. (Contributed by David Moews, 1-May-2017.)
(𝜑𝐴𝐵)       (𝜑 → (¬ 𝐶𝐵 → ¬ 𝐶𝐴))
 
Theoremssneldd 3150 If an element is not in a class, it is also not in a subclass of that class. Deduction form. (Contributed by David Moews, 1-May-2017.)
(𝜑𝐴𝐵)    &   (𝜑 → ¬ 𝐶𝐵)       (𝜑 → ¬ 𝐶𝐴)
 
Theoremssriv 3151* Inference based on subclass definition. (Contributed by NM, 5-Aug-1993.)
(𝑥𝐴𝑥𝐵)       𝐴𝐵
 
Theoremssrd 3152 Deduction based on subclass definition. (Contributed by Thierry Arnoux, 8-Mar-2017.)
𝑥𝜑    &   𝑥𝐴    &   𝑥𝐵    &   (𝜑 → (𝑥𝐴𝑥𝐵))       (𝜑𝐴𝐵)
 
Theoremssrdv 3153* Deduction based on subclass definition. (Contributed by NM, 15-Nov-1995.)
(𝜑 → (𝑥𝐴𝑥𝐵))       (𝜑𝐴𝐵)
 
Theoremsstr2 3154 Transitivity of subclasses. Exercise 5 of [TakeutiZaring] p. 17. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
(𝐴𝐵 → (𝐵𝐶𝐴𝐶))
 
Theoremsstr 3155 Transitivity of subclasses. Theorem 6 of [Suppes] p. 23. (Contributed by NM, 5-Sep-2003.)
((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
 
Theoremsstri 3156 Subclass transitivity inference. (Contributed by NM, 5-May-2000.)
𝐴𝐵    &   𝐵𝐶       𝐴𝐶
 
Theoremsstrd 3157 Subclass transitivity deduction. (Contributed by NM, 2-Jun-2004.)
(𝜑𝐴𝐵)    &   (𝜑𝐵𝐶)       (𝜑𝐴𝐶)
 
Theoremsstrid 3158 Subclass transitivity deduction. (Contributed by NM, 6-Feb-2014.)
𝐴𝐵    &   (𝜑𝐵𝐶)       (𝜑𝐴𝐶)
 
Theoremsstrdi 3159 Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
(𝜑𝐴𝐵)    &   𝐵𝐶       (𝜑𝐴𝐶)
 
Theoremsylan9ss 3160 A subclass transitivity deduction. (Contributed by NM, 27-Sep-2004.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
(𝜑𝐴𝐵)    &   (𝜓𝐵𝐶)       ((𝜑𝜓) → 𝐴𝐶)
 
Theoremsylan9ssr 3161 A subclass transitivity deduction. (Contributed by NM, 27-Sep-2004.)
(𝜑𝐴𝐵)    &   (𝜓𝐵𝐶)       ((𝜓𝜑) → 𝐴𝐶)
 
Theoremeqss 3162 The subclass relationship is antisymmetric. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 5-Aug-1993.)
(𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴))
 
Theoremeqssi 3163 Infer equality from two subclass relationships. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 9-Sep-1993.)
𝐴𝐵    &   𝐵𝐴       𝐴 = 𝐵
 
Theoremeqssd 3164 Equality deduction from two subclass relationships. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 27-Jun-2004.)
(𝜑𝐴𝐵)    &   (𝜑𝐵𝐴)       (𝜑𝐴 = 𝐵)
 
Theoremeqrd 3165 Deduce equality of classes from equivalence of membership. (Contributed by Thierry Arnoux, 21-Mar-2017.)
𝑥𝜑    &   𝑥𝐴    &   𝑥𝐵    &   (𝜑 → (𝑥𝐴𝑥𝐵))       (𝜑𝐴 = 𝐵)
 
Theoremeqelssd 3166* Equality deduction from subclass relationship and membership. (Contributed by AV, 21-Aug-2022.)
(𝜑𝐴𝐵)    &   ((𝜑𝑥𝐵) → 𝑥𝐴)       (𝜑𝐴 = 𝐵)
 
Theoremssid 3167 Any class is a subclass of itself. Exercise 10 of [TakeutiZaring] p. 18. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
𝐴𝐴
 
Theoremssidd 3168 Weakening of ssid 3167. (Contributed by BJ, 1-Sep-2022.)
(𝜑𝐴𝐴)
 
Theoremssv 3169 Any class is a subclass of the universal class. (Contributed by NM, 31-Oct-1995.)
𝐴 ⊆ V
 
Theoremsseq1 3170 Equality theorem for subclasses. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 21-Jun-2011.)
(𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))
 
Theoremsseq2 3171 Equality theorem for the subclass relationship. (Contributed by NM, 25-Jun-1998.)
(𝐴 = 𝐵 → (𝐶𝐴𝐶𝐵))
 
Theoremsseq12 3172 Equality theorem for the subclass relationship. (Contributed by NM, 31-May-1999.)
((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐶𝐵𝐷))
 
Theoremsseq1i 3173 An equality inference for the subclass relationship. (Contributed by NM, 18-Aug-1993.)
𝐴 = 𝐵       (𝐴𝐶𝐵𝐶)
 
Theoremsseq2i 3174 An equality inference for the subclass relationship. (Contributed by NM, 30-Aug-1993.)
𝐴 = 𝐵       (𝐶𝐴𝐶𝐵)
 
Theoremsseq12i 3175 An equality inference for the subclass relationship. (Contributed by NM, 31-May-1999.) (Proof shortened by Eric Schmidt, 26-Jan-2007.)
𝐴 = 𝐵    &   𝐶 = 𝐷       (𝐴𝐶𝐵𝐷)
 
Theoremsseq1d 3176 An equality deduction for the subclass relationship. (Contributed by NM, 14-Aug-1994.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐴𝐶𝐵𝐶))
 
Theoremsseq2d 3177 An equality deduction for the subclass relationship. (Contributed by NM, 14-Aug-1994.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐶𝐴𝐶𝐵))
 
Theoremsseq12d 3178 An equality deduction for the subclass relationship. (Contributed by NM, 31-May-1999.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐷)       (𝜑 → (𝐴𝐶𝐵𝐷))
 
Theoremeqsstri 3179 Substitution of equality into a subclass relationship. (Contributed by NM, 16-Jul-1995.)
𝐴 = 𝐵    &   𝐵𝐶       𝐴𝐶
 
Theoremeqsstrri 3180 Substitution of equality into a subclass relationship. (Contributed by NM, 19-Oct-1999.)
𝐵 = 𝐴    &   𝐵𝐶       𝐴𝐶
 
Theoremsseqtri 3181 Substitution of equality into a subclass relationship. (Contributed by NM, 28-Jul-1995.)
𝐴𝐵    &   𝐵 = 𝐶       𝐴𝐶
 
Theoremsseqtrri 3182 Substitution of equality into a subclass relationship. (Contributed by NM, 4-Apr-1995.)
𝐴𝐵    &   𝐶 = 𝐵       𝐴𝐶
 
Theoremeqsstrd 3183 Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐵𝐶)       (𝜑𝐴𝐶)
 
Theoremeqsstrrd 3184 Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.)
(𝜑𝐵 = 𝐴)    &   (𝜑𝐵𝐶)       (𝜑𝐴𝐶)
 
Theoremsseqtrd 3185 Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.)
(𝜑𝐴𝐵)    &   (𝜑𝐵 = 𝐶)       (𝜑𝐴𝐶)
 
Theoremsseqtrrd 3186 Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.)
(𝜑𝐴𝐵)    &   (𝜑𝐶 = 𝐵)       (𝜑𝐴𝐶)
 
Theorem3sstr3i 3187 Substitution of equality in both sides of a subclass relationship. (Contributed by NM, 13-Jan-1996.) (Proof shortened by Eric Schmidt, 26-Jan-2007.)
𝐴𝐵    &   𝐴 = 𝐶    &   𝐵 = 𝐷       𝐶𝐷
 
Theorem3sstr4i 3188 Substitution of equality in both sides of a subclass relationship. (Contributed by NM, 13-Jan-1996.) (Proof shortened by Eric Schmidt, 26-Jan-2007.)
𝐴𝐵    &   𝐶 = 𝐴    &   𝐷 = 𝐵       𝐶𝐷
 
Theorem3sstr3g 3189 Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 1-Oct-2000.)
(𝜑𝐴𝐵)    &   𝐴 = 𝐶    &   𝐵 = 𝐷       (𝜑𝐶𝐷)
 
Theorem3sstr4g 3190 Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Eric Schmidt, 26-Jan-2007.)
(𝜑𝐴𝐵)    &   𝐶 = 𝐴    &   𝐷 = 𝐵       (𝜑𝐶𝐷)
 
Theorem3sstr3d 3191 Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 1-Oct-2000.)
(𝜑𝐴𝐵)    &   (𝜑𝐴 = 𝐶)    &   (𝜑𝐵 = 𝐷)       (𝜑𝐶𝐷)
 
Theorem3sstr4d 3192 Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 30-Nov-1995.) (Proof shortened by Eric Schmidt, 26-Jan-2007.)
(𝜑𝐴𝐵)    &   (𝜑𝐶 = 𝐴)    &   (𝜑𝐷 = 𝐵)       (𝜑𝐶𝐷)
 
Theoremeqsstrid 3193 B chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.)
𝐴 = 𝐵    &   (𝜑𝐵𝐶)       (𝜑𝐴𝐶)
 
Theoremeqsstrrid 3194 B chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.)
𝐵 = 𝐴    &   (𝜑𝐵𝐶)       (𝜑𝐴𝐶)
 
Theoremsseqtrdi 3195 A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.)
(𝜑𝐴𝐵)    &   𝐵 = 𝐶       (𝜑𝐴𝐶)
 
Theoremsseqtrrdi 3196 A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.)
(𝜑𝐴𝐵)    &   𝐶 = 𝐵       (𝜑𝐴𝐶)
 
Theoremsseqtrid 3197 Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
𝐵𝐴    &   (𝜑𝐴 = 𝐶)       (𝜑𝐵𝐶)
 
Theoremsseqtrrid 3198 Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
𝐵𝐴    &   (𝜑𝐶 = 𝐴)       (𝜑𝐵𝐶)
 
Theoremeqsstrdi 3199 A chained subclass and equality deduction. (Contributed by Mario Carneiro, 2-Jan-2017.)
(𝜑𝐴 = 𝐵)    &   𝐵𝐶       (𝜑𝐴𝐶)
 
Theoremeqsstrrdi 3200 A chained subclass and equality deduction. (Contributed by Mario Carneiro, 2-Jan-2017.)
(𝜑𝐵 = 𝐴)    &   𝐵𝐶       (𝜑𝐴𝐶)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14113
  Copyright terms: Public domain < Previous  Next >