| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfss2 | GIF version | ||
| Description: Alternate definition of the subclass relationship between two classes. Definition 5.9 of [TakeutiZaring] p. 17. (Contributed by NM, 8-Jan-2002.) |
| Ref | Expression |
|---|---|
| dfss2 | ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfss 3171 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ 𝐴 = (𝐴 ∩ 𝐵)) | |
| 2 | df-in 3163 | . . . 4 ⊢ (𝐴 ∩ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} | |
| 3 | 2 | eqeq2i 2207 | . . 3 ⊢ (𝐴 = (𝐴 ∩ 𝐵) ↔ 𝐴 = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)}) |
| 4 | abeq2 2305 | . . 3 ⊢ (𝐴 = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵))) | |
| 5 | 1, 3, 4 | 3bitri 206 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵))) |
| 6 | pm4.71 389 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵))) | |
| 7 | 6 | albii 1484 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵))) |
| 8 | 5, 7 | bitr4i 187 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1362 = wceq 1364 ∈ wcel 2167 {cab 2182 ∩ cin 3156 ⊆ wss 3157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: dfss3 3173 dfss2f 3174 ssel 3177 ssriv 3187 ssrdv 3189 sstr2 3190 eqss 3198 nssr 3243 rabss2 3266 ssconb 3296 ssequn1 3333 unss 3337 ssin 3385 ssddif 3397 reldisj 3502 ssdif0im 3515 inssdif0im 3518 ssundifim 3534 sbcssg 3559 pwss 3621 snssOLD 3748 snssb 3755 snsssn 3791 ssuni 3861 unissb 3869 intss 3895 iunss 3957 dftr2 4133 axpweq 4204 axpow2 4209 ssextss 4253 ordunisuc2r 4550 setind 4575 zfregfr 4610 tfi 4618 ssrel 4751 ssrel2 4753 ssrelrel 4763 reliun 4784 relop 4816 issref 5052 funimass4 5611 isprm2 12285 bj-inf2vnlem3 15618 bj-inf2vnlem4 15619 |
| Copyright terms: Public domain | W3C validator |