Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfss2 | GIF version |
Description: Alternate definition of the subclass relationship between two classes. Definition 5.9 of [TakeutiZaring] p. 17. (Contributed by NM, 8-Jan-2002.) |
Ref | Expression |
---|---|
dfss2 | ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss 3130 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ 𝐴 = (𝐴 ∩ 𝐵)) | |
2 | df-in 3122 | . . . 4 ⊢ (𝐴 ∩ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} | |
3 | 2 | eqeq2i 2176 | . . 3 ⊢ (𝐴 = (𝐴 ∩ 𝐵) ↔ 𝐴 = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)}) |
4 | abeq2 2275 | . . 3 ⊢ (𝐴 = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵))) | |
5 | 1, 3, 4 | 3bitri 205 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵))) |
6 | pm4.71 387 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵))) | |
7 | 6 | albii 1458 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵))) |
8 | 5, 7 | bitr4i 186 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∀wal 1341 = wceq 1343 ∈ wcel 2136 {cab 2151 ∩ cin 3115 ⊆ wss 3116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-in 3122 df-ss 3129 |
This theorem is referenced by: dfss3 3132 dfss2f 3133 ssel 3136 ssriv 3146 ssrdv 3148 sstr2 3149 eqss 3157 nssr 3202 rabss2 3225 ssconb 3255 ssequn1 3292 unss 3296 ssin 3344 ssddif 3356 reldisj 3460 ssdif0im 3473 inssdif0im 3476 ssundifim 3492 sbcssg 3518 pwss 3575 snss 3702 snsssn 3741 ssuni 3811 unissb 3819 intss 3845 iunss 3907 dftr2 4082 axpweq 4150 axpow2 4155 ssextss 4198 ordunisuc2r 4491 setind 4516 zfregfr 4551 tfi 4559 ssrel 4692 ssrel2 4694 ssrelrel 4704 reliun 4725 relop 4754 issref 4986 funimass4 5537 isprm2 12049 bj-inf2vnlem3 13854 bj-inf2vnlem4 13855 |
Copyright terms: Public domain | W3C validator |