ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfss2 GIF version

Theorem dfss2 3174
Description: Alternate definition of the subclass relationship between two classes. Exercise 9 of [TakeutiZaring] p. 18. This is another name for df-ss 3170 which is more consistent with the naming in the Metamath Proof Explorer. (Contributed by NM, 27-Apr-1994.)
Assertion
Ref Expression
dfss2 (𝐴𝐵 ↔ (𝐴𝐵) = 𝐴)

Proof of Theorem dfss2
StepHypRef Expression
1 df-ss 3170 1 (𝐴𝐵 ↔ (𝐴𝐵) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1364  cin 3156  wss 3157
This theorem depends on definitions:  df-ss 3170
This theorem is referenced by:  bitsinv1  12144
  Copyright terms: Public domain W3C validator