| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elin | GIF version | ||
| Description: Expansion of membership in an intersection of two classes. Theorem 12 of [Suppes] p. 25. (Contributed by NM, 29-Apr-1994.) |
| Ref | Expression |
|---|---|
| elin | ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2783 | . 2 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) → 𝐴 ∈ V) | |
| 2 | elex 2783 | . . 3 ⊢ (𝐴 ∈ 𝐶 → 𝐴 ∈ V) | |
| 3 | 2 | adantl 277 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) → 𝐴 ∈ V) |
| 4 | eleq1 2268 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 5 | eleq1 2268 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐶 ↔ 𝐴 ∈ 𝐶)) | |
| 6 | 4, 5 | anbi12d 473 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶))) |
| 7 | df-in 3172 | . . 3 ⊢ (𝐵 ∩ 𝐶) = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)} | |
| 8 | 6, 7 | elab2g 2920 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶))) |
| 9 | 1, 3, 8 | pm5.21nii 706 | 1 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2176 Vcvv 2772 ∩ cin 3165 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-in 3172 |
| This theorem is referenced by: elini 3357 elind 3358 elinel1 3359 elinel2 3360 elin2 3361 elin3 3364 incom 3365 ineqri 3366 ineq1 3367 inass 3383 inss1 3393 ssin 3395 ssrin 3398 dfss4st 3406 inssdif 3409 difin 3410 unssin 3412 inssun 3413 invdif 3415 indif 3416 indi 3420 undi 3421 difundi 3425 difindiss 3427 indifdir 3429 difin2 3435 inrab2 3446 inelcm 3521 inssdif0im 3528 uniin 3870 intun 3916 intpr 3917 elrint 3925 iunin2 3991 iinin2m 3996 elriin 3998 disjnim 4035 disjiun 4039 brin 4096 trin 4152 inex1 4178 inuni 4199 bnd2 4217 ordpwsucss 4615 ordpwsucexmid 4618 peano5 4646 inopab 4810 inxp 4812 dmin 4886 opelres 4964 intasym 5067 asymref 5068 dminss 5097 imainss 5098 inimasn 5100 ssrnres 5125 cnvresima 5172 dfco2a 5183 funinsn 5323 imainlem 5355 imain 5356 2elresin 5387 nfvres 5610 respreima 5708 isoini 5887 offval 6166 tfrlem5 6400 mapval2 6765 ixpin 6810 ssenen 6948 infidc 7036 fnfi 7038 peano5nnnn 8005 peano5nni 9039 ixxdisj 10025 icodisj 10114 fzdisj 10174 uzdisj 10215 nn0disj 10260 fzouzdisj 10304 isumss 11702 fsumsplit 11718 sumsplitdc 11743 fsum2dlemstep 11745 fprod2dlemstep 11933 bitsmod 12267 bitsinv1 12273 4sqlem12 12725 nninfdclemcl 12819 nninfdclemp1 12821 insubm 13317 isrhm 13920 subsubrng2 13977 subsubrg2 14008 2idlelb 14267 isbasis2g 14517 tgval2 14523 tgcl 14536 epttop 14562 ssntr 14594 ntreq0 14604 cnptopresti 14710 cnptoprest 14711 cnptoprest2 14712 lmss 14718 txcnp 14743 txcnmpt 14745 bldisj 14873 blininf 14896 blres 14906 metrest 14978 pilem1 15251 bj-charfundcALT 15745 bj-charfunr 15746 bdinex1 15835 bj-indind 15868 |
| Copyright terms: Public domain | W3C validator |