| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elin | GIF version | ||
| Description: Expansion of membership in an intersection of two classes. Theorem 12 of [Suppes] p. 25. (Contributed by NM, 29-Apr-1994.) |
| Ref | Expression |
|---|---|
| elin | ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2788 | . 2 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) → 𝐴 ∈ V) | |
| 2 | elex 2788 | . . 3 ⊢ (𝐴 ∈ 𝐶 → 𝐴 ∈ V) | |
| 3 | 2 | adantl 277 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) → 𝐴 ∈ V) |
| 4 | eleq1 2270 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 5 | eleq1 2270 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐶 ↔ 𝐴 ∈ 𝐶)) | |
| 6 | 4, 5 | anbi12d 473 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶))) |
| 7 | df-in 3180 | . . 3 ⊢ (𝐵 ∩ 𝐶) = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)} | |
| 8 | 6, 7 | elab2g 2927 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶))) |
| 9 | 1, 3, 8 | pm5.21nii 706 | 1 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2178 Vcvv 2776 ∩ cin 3173 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-in 3180 |
| This theorem is referenced by: elini 3365 elind 3366 elinel1 3367 elinel2 3368 elin2 3369 elin3 3372 incom 3373 ineqri 3374 ineq1 3375 inass 3391 inss1 3401 ssin 3403 ssrin 3406 dfss4st 3414 inssdif 3417 difin 3418 unssin 3420 inssun 3421 invdif 3423 indif 3424 indi 3428 undi 3429 difundi 3433 difindiss 3435 indifdir 3437 difin2 3443 inrab2 3454 inelcm 3529 inssdif0im 3536 uniin 3884 intun 3930 intpr 3931 elrint 3939 iunin2 4005 iinin2m 4010 elriin 4012 disjnim 4049 disjiun 4054 brin 4112 trin 4168 inex1 4194 inuni 4215 bnd2 4233 ordpwsucss 4633 ordpwsucexmid 4636 peano5 4664 inopab 4828 inxp 4830 dmin 4905 opelres 4983 intasym 5086 asymref 5087 dminss 5116 imainss 5117 inimasn 5119 ssrnres 5144 cnvresima 5191 dfco2a 5202 funinsn 5342 imainlem 5374 imain 5375 2elresin 5406 nfvres 5633 respreima 5731 isoini 5910 offval 6189 tfrlem5 6423 mapval2 6788 ixpin 6833 ssenen 6973 infidc 7062 fnfi 7064 peano5nnnn 8040 peano5nni 9074 ixxdisj 10060 icodisj 10149 fzdisj 10209 uzdisj 10250 nn0disj 10295 fzouzdisj 10339 isumss 11817 fsumsplit 11833 sumsplitdc 11858 fsum2dlemstep 11860 fprod2dlemstep 12048 bitsmod 12382 bitsinv1 12388 4sqlem12 12840 nninfdclemcl 12934 nninfdclemp1 12936 insubm 13432 isrhm 14035 subsubrng2 14092 subsubrg2 14123 2idlelb 14382 isbasis2g 14632 tgval2 14638 tgcl 14651 epttop 14677 ssntr 14709 ntreq0 14719 cnptopresti 14825 cnptoprest 14826 cnptoprest2 14827 lmss 14833 txcnp 14858 txcnmpt 14860 bldisj 14988 blininf 15011 blres 15021 metrest 15093 pilem1 15366 bj-charfundcALT 15944 bj-charfunr 15945 bdinex1 16034 bj-indind 16067 |
| Copyright terms: Public domain | W3C validator |