Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elin | GIF version |
Description: Expansion of membership in an intersection of two classes. Theorem 12 of [Suppes] p. 25. (Contributed by NM, 29-Apr-1994.) |
Ref | Expression |
---|---|
elin | ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2741 | . 2 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) → 𝐴 ∈ V) | |
2 | elex 2741 | . . 3 ⊢ (𝐴 ∈ 𝐶 → 𝐴 ∈ V) | |
3 | 2 | adantl 275 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) → 𝐴 ∈ V) |
4 | eleq1 2233 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
5 | eleq1 2233 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐶 ↔ 𝐴 ∈ 𝐶)) | |
6 | 4, 5 | anbi12d 470 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶))) |
7 | df-in 3127 | . . 3 ⊢ (𝐵 ∩ 𝐶) = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)} | |
8 | 6, 7 | elab2g 2877 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶))) |
9 | 1, 3, 8 | pm5.21nii 699 | 1 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 = wceq 1348 ∈ wcel 2141 Vcvv 2730 ∩ cin 3120 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-in 3127 |
This theorem is referenced by: elini 3311 elind 3312 elinel1 3313 elinel2 3314 elin2 3315 elin3 3318 incom 3319 ineqri 3320 ineq1 3321 inass 3337 inss1 3347 ssin 3349 ssrin 3352 dfss4st 3360 inssdif 3363 difin 3364 unssin 3366 inssun 3367 invdif 3369 indif 3370 indi 3374 undi 3375 difundi 3379 difindiss 3381 indifdir 3383 difin2 3389 inrab2 3400 inelcm 3475 inssdif0im 3482 uniin 3816 intun 3862 intpr 3863 elrint 3871 iunin2 3936 iinin2m 3941 elriin 3943 disjnim 3980 disjiun 3984 brin 4041 trin 4097 inex1 4123 inuni 4141 bnd2 4159 ordpwsucss 4551 ordpwsucexmid 4554 peano5 4582 inopab 4743 inxp 4745 dmin 4819 opelres 4896 intasym 4995 asymref 4996 dminss 5025 imainss 5026 inimasn 5028 ssrnres 5053 cnvresima 5100 dfco2a 5111 funinsn 5247 imainlem 5279 imain 5280 2elresin 5309 nfvres 5529 respreima 5624 isoini 5797 offval 6068 tfrlem5 6293 mapval2 6656 ixpin 6701 ssenen 6829 fnfi 6914 peano5nnnn 7854 peano5nni 8881 ixxdisj 9860 icodisj 9949 fzdisj 10008 uzdisj 10049 nn0disj 10094 fzouzdisj 10136 isumss 11354 fsumsplit 11370 sumsplitdc 11395 fsum2dlemstep 11397 fprod2dlemstep 11585 nninfdclemcl 12403 nninfdclemp1 12405 insubm 12703 isbasis2g 12837 tgval2 12845 tgcl 12858 epttop 12884 ssntr 12916 ntreq0 12926 cnptopresti 13032 cnptoprest 13033 cnptoprest2 13034 lmss 13040 txcnp 13065 txcnmpt 13067 bldisj 13195 blininf 13218 blres 13228 metrest 13300 pilem1 13494 bj-charfundcALT 13844 bj-charfunr 13845 bdinex1 13934 bj-indind 13967 |
Copyright terms: Public domain | W3C validator |