![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elin | GIF version |
Description: Expansion of membership in an intersection of two classes. Theorem 12 of [Suppes] p. 25. (Contributed by NM, 29-Apr-1994.) |
Ref | Expression |
---|---|
elin | ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2749 | . 2 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) → 𝐴 ∈ V) | |
2 | elex 2749 | . . 3 ⊢ (𝐴 ∈ 𝐶 → 𝐴 ∈ V) | |
3 | 2 | adantl 277 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) → 𝐴 ∈ V) |
4 | eleq1 2240 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
5 | eleq1 2240 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐶 ↔ 𝐴 ∈ 𝐶)) | |
6 | 4, 5 | anbi12d 473 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶))) |
7 | df-in 3136 | . . 3 ⊢ (𝐵 ∩ 𝐶) = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)} | |
8 | 6, 7 | elab2g 2885 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶))) |
9 | 1, 3, 8 | pm5.21nii 704 | 1 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2148 Vcvv 2738 ∩ cin 3129 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2740 df-in 3136 |
This theorem is referenced by: elini 3320 elind 3321 elinel1 3322 elinel2 3323 elin2 3324 elin3 3327 incom 3328 ineqri 3329 ineq1 3330 inass 3346 inss1 3356 ssin 3358 ssrin 3361 dfss4st 3369 inssdif 3372 difin 3373 unssin 3375 inssun 3376 invdif 3378 indif 3379 indi 3383 undi 3384 difundi 3388 difindiss 3390 indifdir 3392 difin2 3398 inrab2 3409 inelcm 3484 inssdif0im 3491 uniin 3830 intun 3876 intpr 3877 elrint 3885 iunin2 3951 iinin2m 3956 elriin 3958 disjnim 3995 disjiun 3999 brin 4056 trin 4112 inex1 4138 inuni 4156 bnd2 4174 ordpwsucss 4567 ordpwsucexmid 4570 peano5 4598 inopab 4760 inxp 4762 dmin 4836 opelres 4913 intasym 5014 asymref 5015 dminss 5044 imainss 5045 inimasn 5047 ssrnres 5072 cnvresima 5119 dfco2a 5130 funinsn 5266 imainlem 5298 imain 5299 2elresin 5328 nfvres 5549 respreima 5645 isoini 5819 offval 6090 tfrlem5 6315 mapval2 6678 ixpin 6723 ssenen 6851 fnfi 6936 peano5nnnn 7891 peano5nni 8922 ixxdisj 9903 icodisj 9992 fzdisj 10052 uzdisj 10093 nn0disj 10138 fzouzdisj 10180 isumss 11399 fsumsplit 11415 sumsplitdc 11440 fsum2dlemstep 11442 fprod2dlemstep 11630 nninfdclemcl 12449 nninfdclemp1 12451 insubm 12872 subsubrg2 13367 isbasis2g 13548 tgval2 13554 tgcl 13567 epttop 13593 ssntr 13625 ntreq0 13635 cnptopresti 13741 cnptoprest 13742 cnptoprest2 13743 lmss 13749 txcnp 13774 txcnmpt 13776 bldisj 13904 blininf 13927 blres 13937 metrest 14009 pilem1 14203 bj-charfundcALT 14564 bj-charfunr 14565 bdinex1 14654 bj-indind 14687 |
Copyright terms: Public domain | W3C validator |