| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elin | GIF version | ||
| Description: Expansion of membership in an intersection of two classes. Theorem 12 of [Suppes] p. 25. (Contributed by NM, 29-Apr-1994.) |
| Ref | Expression |
|---|---|
| elin | ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2811 | . 2 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) → 𝐴 ∈ V) | |
| 2 | elex 2811 | . . 3 ⊢ (𝐴 ∈ 𝐶 → 𝐴 ∈ V) | |
| 3 | 2 | adantl 277 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) → 𝐴 ∈ V) |
| 4 | eleq1 2292 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 5 | eleq1 2292 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐶 ↔ 𝐴 ∈ 𝐶)) | |
| 6 | 4, 5 | anbi12d 473 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶))) |
| 7 | df-in 3203 | . . 3 ⊢ (𝐵 ∩ 𝐶) = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)} | |
| 8 | 6, 7 | elab2g 2950 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶))) |
| 9 | 1, 3, 8 | pm5.21nii 709 | 1 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 Vcvv 2799 ∩ cin 3196 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-in 3203 |
| This theorem is referenced by: elini 3388 elind 3389 elinel1 3390 elinel2 3391 elin2 3392 elin3 3395 incom 3396 ineqri 3397 ineq1 3398 inass 3414 inss1 3424 ssin 3426 ssrin 3429 dfss4st 3437 inssdif 3440 difin 3441 unssin 3443 inssun 3444 invdif 3446 indif 3447 indi 3451 undi 3452 difundi 3456 difindiss 3458 indifdir 3460 difin2 3466 inrab2 3477 inelcm 3552 inssdif0im 3559 uniin 3907 intun 3953 intpr 3954 elrint 3962 iunin2 4028 iinin2m 4033 elriin 4035 disjnim 4072 disjiun 4077 brin 4135 trin 4191 inex1 4217 inuni 4238 bnd2 4256 ordpwsucss 4658 ordpwsucexmid 4661 peano5 4689 inopab 4853 inxp 4855 dmin 4930 opelres 5009 intasym 5112 asymref 5113 dminss 5142 imainss 5143 inimasn 5145 ssrnres 5170 cnvresima 5217 dfco2a 5228 funinsn 5369 imainlem 5401 imain 5402 2elresin 5433 nfvres 5662 respreima 5762 isoini 5941 offval 6224 tfrlem5 6458 mapval2 6823 ixpin 6868 ssenen 7008 infidc 7097 fnfi 7099 peano5nnnn 8075 peano5nni 9109 ixxdisj 10095 icodisj 10184 fzdisj 10244 uzdisj 10285 nn0disj 10330 fzouzdisj 10374 isumss 11897 fsumsplit 11913 sumsplitdc 11938 fsum2dlemstep 11940 fprod2dlemstep 12128 bitsmod 12462 bitsinv1 12468 4sqlem12 12920 nninfdclemcl 13014 nninfdclemp1 13016 insubm 13513 isrhm 14116 subsubrng2 14173 subsubrg2 14204 2idlelb 14463 isbasis2g 14713 tgval2 14719 tgcl 14732 epttop 14758 ssntr 14790 ntreq0 14800 cnptopresti 14906 cnptoprest 14907 cnptoprest2 14908 lmss 14914 txcnp 14939 txcnmpt 14941 bldisj 15069 blininf 15092 blres 15102 metrest 15174 pilem1 15447 bj-charfundcALT 16130 bj-charfunr 16131 bdinex1 16220 bj-indind 16253 |
| Copyright terms: Public domain | W3C validator |