| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elin | GIF version | ||
| Description: Expansion of membership in an intersection of two classes. Theorem 12 of [Suppes] p. 25. (Contributed by NM, 29-Apr-1994.) |
| Ref | Expression |
|---|---|
| elin | ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2782 | . 2 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) → 𝐴 ∈ V) | |
| 2 | elex 2782 | . . 3 ⊢ (𝐴 ∈ 𝐶 → 𝐴 ∈ V) | |
| 3 | 2 | adantl 277 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) → 𝐴 ∈ V) |
| 4 | eleq1 2267 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 5 | eleq1 2267 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐶 ↔ 𝐴 ∈ 𝐶)) | |
| 6 | 4, 5 | anbi12d 473 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶))) |
| 7 | df-in 3171 | . . 3 ⊢ (𝐵 ∩ 𝐶) = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)} | |
| 8 | 6, 7 | elab2g 2919 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶))) |
| 9 | 1, 3, 8 | pm5.21nii 705 | 1 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1372 ∈ wcel 2175 Vcvv 2771 ∩ cin 3164 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-in 3171 |
| This theorem is referenced by: elini 3356 elind 3357 elinel1 3358 elinel2 3359 elin2 3360 elin3 3363 incom 3364 ineqri 3365 ineq1 3366 inass 3382 inss1 3392 ssin 3394 ssrin 3397 dfss4st 3405 inssdif 3408 difin 3409 unssin 3411 inssun 3412 invdif 3414 indif 3415 indi 3419 undi 3420 difundi 3424 difindiss 3426 indifdir 3428 difin2 3434 inrab2 3445 inelcm 3520 inssdif0im 3527 uniin 3869 intun 3915 intpr 3916 elrint 3924 iunin2 3990 iinin2m 3995 elriin 3997 disjnim 4034 disjiun 4038 brin 4095 trin 4151 inex1 4177 inuni 4198 bnd2 4216 ordpwsucss 4614 ordpwsucexmid 4617 peano5 4645 inopab 4809 inxp 4811 dmin 4885 opelres 4963 intasym 5066 asymref 5067 dminss 5096 imainss 5097 inimasn 5099 ssrnres 5124 cnvresima 5171 dfco2a 5182 funinsn 5322 imainlem 5354 imain 5355 2elresin 5386 nfvres 5609 respreima 5707 isoini 5886 offval 6165 tfrlem5 6399 mapval2 6764 ixpin 6809 ssenen 6947 infidc 7035 fnfi 7037 peano5nnnn 8004 peano5nni 9038 ixxdisj 10024 icodisj 10113 fzdisj 10173 uzdisj 10214 nn0disj 10259 fzouzdisj 10302 isumss 11673 fsumsplit 11689 sumsplitdc 11714 fsum2dlemstep 11716 fprod2dlemstep 11904 bitsmod 12238 bitsinv1 12244 4sqlem12 12696 nninfdclemcl 12790 nninfdclemp1 12792 insubm 13288 isrhm 13891 subsubrng2 13948 subsubrg2 13979 2idlelb 14238 isbasis2g 14488 tgval2 14494 tgcl 14507 epttop 14533 ssntr 14565 ntreq0 14575 cnptopresti 14681 cnptoprest 14682 cnptoprest2 14683 lmss 14689 txcnp 14714 txcnmpt 14716 bldisj 14844 blininf 14867 blres 14877 metrest 14949 pilem1 15222 bj-charfundcALT 15707 bj-charfunr 15708 bdinex1 15797 bj-indind 15830 |
| Copyright terms: Public domain | W3C validator |