| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elin | GIF version | ||
| Description: Expansion of membership in an intersection of two classes. Theorem 12 of [Suppes] p. 25. (Contributed by NM, 29-Apr-1994.) |
| Ref | Expression |
|---|---|
| elin | ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2774 | . 2 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) → 𝐴 ∈ V) | |
| 2 | elex 2774 | . . 3 ⊢ (𝐴 ∈ 𝐶 → 𝐴 ∈ V) | |
| 3 | 2 | adantl 277 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) → 𝐴 ∈ V) |
| 4 | eleq1 2259 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 5 | eleq1 2259 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐶 ↔ 𝐴 ∈ 𝐶)) | |
| 6 | 4, 5 | anbi12d 473 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶))) |
| 7 | df-in 3163 | . . 3 ⊢ (𝐵 ∩ 𝐶) = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)} | |
| 8 | 6, 7 | elab2g 2911 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶))) |
| 9 | 1, 3, 8 | pm5.21nii 705 | 1 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 Vcvv 2763 ∩ cin 3156 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 |
| This theorem is referenced by: elini 3348 elind 3349 elinel1 3350 elinel2 3351 elin2 3352 elin3 3355 incom 3356 ineqri 3357 ineq1 3358 inass 3374 inss1 3384 ssin 3386 ssrin 3389 dfss4st 3397 inssdif 3400 difin 3401 unssin 3403 inssun 3404 invdif 3406 indif 3407 indi 3411 undi 3412 difundi 3416 difindiss 3418 indifdir 3420 difin2 3426 inrab2 3437 inelcm 3512 inssdif0im 3519 uniin 3860 intun 3906 intpr 3907 elrint 3915 iunin2 3981 iinin2m 3986 elriin 3988 disjnim 4025 disjiun 4029 brin 4086 trin 4142 inex1 4168 inuni 4189 bnd2 4207 ordpwsucss 4604 ordpwsucexmid 4607 peano5 4635 inopab 4799 inxp 4801 dmin 4875 opelres 4952 intasym 5055 asymref 5056 dminss 5085 imainss 5086 inimasn 5088 ssrnres 5113 cnvresima 5160 dfco2a 5171 funinsn 5308 imainlem 5340 imain 5341 2elresin 5372 nfvres 5595 respreima 5693 isoini 5868 offval 6147 tfrlem5 6381 mapval2 6746 ixpin 6791 ssenen 6921 infidc 7009 fnfi 7011 peano5nnnn 7978 peano5nni 9012 ixxdisj 9997 icodisj 10086 fzdisj 10146 uzdisj 10187 nn0disj 10232 fzouzdisj 10275 isumss 11575 fsumsplit 11591 sumsplitdc 11616 fsum2dlemstep 11618 fprod2dlemstep 11806 bitsmod 12140 bitsinv1 12146 4sqlem12 12598 nninfdclemcl 12692 nninfdclemp1 12694 insubm 13189 isrhm 13792 subsubrng2 13849 subsubrg2 13880 2idlelb 14139 isbasis2g 14389 tgval2 14395 tgcl 14408 epttop 14434 ssntr 14466 ntreq0 14476 cnptopresti 14582 cnptoprest 14583 cnptoprest2 14584 lmss 14590 txcnp 14615 txcnmpt 14617 bldisj 14745 blininf 14768 blres 14778 metrest 14850 pilem1 15123 bj-charfundcALT 15563 bj-charfunr 15564 bdinex1 15653 bj-indind 15686 |
| Copyright terms: Public domain | W3C validator |