Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elin | GIF version |
Description: Expansion of membership in an intersection of two classes. Theorem 12 of [Suppes] p. 25. (Contributed by NM, 29-Apr-1994.) |
Ref | Expression |
---|---|
elin | ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2746 | . 2 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) → 𝐴 ∈ V) | |
2 | elex 2746 | . . 3 ⊢ (𝐴 ∈ 𝐶 → 𝐴 ∈ V) | |
3 | 2 | adantl 277 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) → 𝐴 ∈ V) |
4 | eleq1 2238 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
5 | eleq1 2238 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐶 ↔ 𝐴 ∈ 𝐶)) | |
6 | 4, 5 | anbi12d 473 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶))) |
7 | df-in 3133 | . . 3 ⊢ (𝐵 ∩ 𝐶) = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)} | |
8 | 6, 7 | elab2g 2882 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶))) |
9 | 1, 3, 8 | pm5.21nii 704 | 1 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2146 Vcvv 2735 ∩ cin 3126 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-in 3133 |
This theorem is referenced by: elini 3317 elind 3318 elinel1 3319 elinel2 3320 elin2 3321 elin3 3324 incom 3325 ineqri 3326 ineq1 3327 inass 3343 inss1 3353 ssin 3355 ssrin 3358 dfss4st 3366 inssdif 3369 difin 3370 unssin 3372 inssun 3373 invdif 3375 indif 3376 indi 3380 undi 3381 difundi 3385 difindiss 3387 indifdir 3389 difin2 3395 inrab2 3406 inelcm 3481 inssdif0im 3488 uniin 3825 intun 3871 intpr 3872 elrint 3880 iunin2 3945 iinin2m 3950 elriin 3952 disjnim 3989 disjiun 3993 brin 4050 trin 4106 inex1 4132 inuni 4150 bnd2 4168 ordpwsucss 4560 ordpwsucexmid 4563 peano5 4591 inopab 4752 inxp 4754 dmin 4828 opelres 4905 intasym 5005 asymref 5006 dminss 5035 imainss 5036 inimasn 5038 ssrnres 5063 cnvresima 5110 dfco2a 5121 funinsn 5257 imainlem 5289 imain 5290 2elresin 5319 nfvres 5540 respreima 5636 isoini 5809 offval 6080 tfrlem5 6305 mapval2 6668 ixpin 6713 ssenen 6841 fnfi 6926 peano5nnnn 7866 peano5nni 8893 ixxdisj 9872 icodisj 9961 fzdisj 10020 uzdisj 10061 nn0disj 10106 fzouzdisj 10148 isumss 11365 fsumsplit 11381 sumsplitdc 11406 fsum2dlemstep 11408 fprod2dlemstep 11596 nninfdclemcl 12414 nninfdclemp1 12416 insubm 12732 isbasis2g 13094 tgval2 13102 tgcl 13115 epttop 13141 ssntr 13173 ntreq0 13183 cnptopresti 13289 cnptoprest 13290 cnptoprest2 13291 lmss 13297 txcnp 13322 txcnmpt 13324 bldisj 13452 blininf 13475 blres 13485 metrest 13557 pilem1 13751 bj-charfundcALT 14101 bj-charfunr 14102 bdinex1 14191 bj-indind 14224 |
Copyright terms: Public domain | W3C validator |