![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elin | GIF version |
Description: Expansion of membership in an intersection of two classes. Theorem 12 of [Suppes] p. 25. (Contributed by NM, 29-Apr-1994.) |
Ref | Expression |
---|---|
elin | ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2771 | . 2 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) → 𝐴 ∈ V) | |
2 | elex 2771 | . . 3 ⊢ (𝐴 ∈ 𝐶 → 𝐴 ∈ V) | |
3 | 2 | adantl 277 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶) → 𝐴 ∈ V) |
4 | eleq1 2256 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
5 | eleq1 2256 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐶 ↔ 𝐴 ∈ 𝐶)) | |
6 | 4, 5 | anbi12d 473 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶))) |
7 | df-in 3160 | . . 3 ⊢ (𝐵 ∩ 𝐶) = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)} | |
8 | 6, 7 | elab2g 2908 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶))) |
9 | 1, 3, 8 | pm5.21nii 705 | 1 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 Vcvv 2760 ∩ cin 3153 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-in 3160 |
This theorem is referenced by: elini 3344 elind 3345 elinel1 3346 elinel2 3347 elin2 3348 elin3 3351 incom 3352 ineqri 3353 ineq1 3354 inass 3370 inss1 3380 ssin 3382 ssrin 3385 dfss4st 3393 inssdif 3396 difin 3397 unssin 3399 inssun 3400 invdif 3402 indif 3403 indi 3407 undi 3408 difundi 3412 difindiss 3414 indifdir 3416 difin2 3422 inrab2 3433 inelcm 3508 inssdif0im 3515 uniin 3856 intun 3902 intpr 3903 elrint 3911 iunin2 3977 iinin2m 3982 elriin 3984 disjnim 4021 disjiun 4025 brin 4082 trin 4138 inex1 4164 inuni 4185 bnd2 4203 ordpwsucss 4600 ordpwsucexmid 4603 peano5 4631 inopab 4795 inxp 4797 dmin 4871 opelres 4948 intasym 5051 asymref 5052 dminss 5081 imainss 5082 inimasn 5084 ssrnres 5109 cnvresima 5156 dfco2a 5167 funinsn 5304 imainlem 5336 imain 5337 2elresin 5366 nfvres 5589 respreima 5687 isoini 5862 offval 6140 tfrlem5 6369 mapval2 6734 ixpin 6779 ssenen 6909 infidc 6995 fnfi 6997 peano5nnnn 7954 peano5nni 8987 ixxdisj 9972 icodisj 10061 fzdisj 10121 uzdisj 10162 nn0disj 10207 fzouzdisj 10250 isumss 11537 fsumsplit 11553 sumsplitdc 11578 fsum2dlemstep 11580 fprod2dlemstep 11768 4sqlem12 12543 nninfdclemcl 12608 nninfdclemp1 12610 insubm 13060 isrhm 13657 subsubrng2 13714 subsubrg2 13745 2idlelb 14004 isbasis2g 14224 tgval2 14230 tgcl 14243 epttop 14269 ssntr 14301 ntreq0 14311 cnptopresti 14417 cnptoprest 14418 cnptoprest2 14419 lmss 14425 txcnp 14450 txcnmpt 14452 bldisj 14580 blininf 14603 blres 14613 metrest 14685 pilem1 14955 bj-charfundcALT 15371 bj-charfunr 15372 bdinex1 15461 bj-indind 15494 |
Copyright terms: Public domain | W3C validator |