ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iinxprg GIF version

Theorem iinxprg 4040
Description: Indexed intersection with an unordered pair index. (Contributed by NM, 25-Jan-2012.)
Hypotheses
Ref Expression
iinxprg.1 (𝑥 = 𝐴𝐶 = 𝐷)
iinxprg.2 (𝑥 = 𝐵𝐶 = 𝐸)
Assertion
Ref Expression
iinxprg ((𝐴𝑉𝐵𝑊) → 𝑥 ∈ {𝐴, 𝐵}𝐶 = (𝐷𝐸))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝐸
Allowed substitution hints:   𝐶(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem iinxprg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 iinxprg.1 . . . . 5 (𝑥 = 𝐴𝐶 = 𝐷)
21eleq2d 2299 . . . 4 (𝑥 = 𝐴 → (𝑦𝐶𝑦𝐷))
3 iinxprg.2 . . . . 5 (𝑥 = 𝐵𝐶 = 𝐸)
43eleq2d 2299 . . . 4 (𝑥 = 𝐵 → (𝑦𝐶𝑦𝐸))
52, 4ralprg 3717 . . 3 ((𝐴𝑉𝐵𝑊) → (∀𝑥 ∈ {𝐴, 𝐵}𝑦𝐶 ↔ (𝑦𝐷𝑦𝐸)))
65abbidv 2347 . 2 ((𝐴𝑉𝐵𝑊) → {𝑦 ∣ ∀𝑥 ∈ {𝐴, 𝐵}𝑦𝐶} = {𝑦 ∣ (𝑦𝐷𝑦𝐸)})
7 df-iin 3968 . 2 𝑥 ∈ {𝐴, 𝐵}𝐶 = {𝑦 ∣ ∀𝑥 ∈ {𝐴, 𝐵}𝑦𝐶}
8 df-in 3203 . 2 (𝐷𝐸) = {𝑦 ∣ (𝑦𝐷𝑦𝐸)}
96, 7, 83eqtr4g 2287 1 ((𝐴𝑉𝐵𝑊) → 𝑥 ∈ {𝐴, 𝐵}𝐶 = (𝐷𝐸))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  {cab 2215  wral 2508  cin 3196  {cpr 3667   ciin 3966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-sn 3672  df-pr 3673  df-iin 3968
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator