| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iinxprg | GIF version | ||
| Description: Indexed intersection with an unordered pair index. (Contributed by NM, 25-Jan-2012.) |
| Ref | Expression |
|---|---|
| iinxprg.1 | ⊢ (𝑥 = 𝐴 → 𝐶 = 𝐷) |
| iinxprg.2 | ⊢ (𝑥 = 𝐵 → 𝐶 = 𝐸) |
| Ref | Expression |
|---|---|
| iinxprg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∩ 𝑥 ∈ {𝐴, 𝐵}𝐶 = (𝐷 ∩ 𝐸)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iinxprg.1 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝐶 = 𝐷) | |
| 2 | 1 | eleq2d 2279 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) |
| 3 | iinxprg.2 | . . . . 5 ⊢ (𝑥 = 𝐵 → 𝐶 = 𝐸) | |
| 4 | 3 | eleq2d 2279 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐸)) |
| 5 | 2, 4 | ralprg 3697 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∀𝑥 ∈ {𝐴, 𝐵}𝑦 ∈ 𝐶 ↔ (𝑦 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸))) |
| 6 | 5 | abbidv 2327 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {𝑦 ∣ ∀𝑥 ∈ {𝐴, 𝐵}𝑦 ∈ 𝐶} = {𝑦 ∣ (𝑦 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸)}) |
| 7 | df-iin 3947 | . 2 ⊢ ∩ 𝑥 ∈ {𝐴, 𝐵}𝐶 = {𝑦 ∣ ∀𝑥 ∈ {𝐴, 𝐵}𝑦 ∈ 𝐶} | |
| 8 | df-in 3183 | . 2 ⊢ (𝐷 ∩ 𝐸) = {𝑦 ∣ (𝑦 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸)} | |
| 9 | 6, 7, 8 | 3eqtr4g 2267 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∩ 𝑥 ∈ {𝐴, 𝐵}𝐶 = (𝐷 ∩ 𝐸)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1375 ∈ wcel 2180 {cab 2195 ∀wral 2488 ∩ cin 3176 {cpr 3647 ∩ ciin 3945 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-v 2781 df-sbc 3009 df-un 3181 df-in 3183 df-sn 3652 df-pr 3653 df-iin 3947 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |