ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iinxprg GIF version

Theorem iinxprg 4004
Description: Indexed intersection with an unordered pair index. (Contributed by NM, 25-Jan-2012.)
Hypotheses
Ref Expression
iinxprg.1 (𝑥 = 𝐴𝐶 = 𝐷)
iinxprg.2 (𝑥 = 𝐵𝐶 = 𝐸)
Assertion
Ref Expression
iinxprg ((𝐴𝑉𝐵𝑊) → 𝑥 ∈ {𝐴, 𝐵}𝐶 = (𝐷𝐸))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝐸
Allowed substitution hints:   𝐶(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem iinxprg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 iinxprg.1 . . . . 5 (𝑥 = 𝐴𝐶 = 𝐷)
21eleq2d 2276 . . . 4 (𝑥 = 𝐴 → (𝑦𝐶𝑦𝐷))
3 iinxprg.2 . . . . 5 (𝑥 = 𝐵𝐶 = 𝐸)
43eleq2d 2276 . . . 4 (𝑥 = 𝐵 → (𝑦𝐶𝑦𝐸))
52, 4ralprg 3685 . . 3 ((𝐴𝑉𝐵𝑊) → (∀𝑥 ∈ {𝐴, 𝐵}𝑦𝐶 ↔ (𝑦𝐷𝑦𝐸)))
65abbidv 2324 . 2 ((𝐴𝑉𝐵𝑊) → {𝑦 ∣ ∀𝑥 ∈ {𝐴, 𝐵}𝑦𝐶} = {𝑦 ∣ (𝑦𝐷𝑦𝐸)})
7 df-iin 3932 . 2 𝑥 ∈ {𝐴, 𝐵}𝐶 = {𝑦 ∣ ∀𝑥 ∈ {𝐴, 𝐵}𝑦𝐶}
8 df-in 3173 . 2 (𝐷𝐸) = {𝑦 ∣ (𝑦𝐷𝑦𝐸)}
96, 7, 83eqtr4g 2264 1 ((𝐴𝑉𝐵𝑊) → 𝑥 ∈ {𝐴, 𝐵}𝐶 = (𝐷𝐸))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  {cab 2192  wral 2485  cin 3166  {cpr 3635   ciin 3930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-v 2775  df-sbc 3000  df-un 3171  df-in 3173  df-sn 3640  df-pr 3641  df-iin 3932
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator