| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > df-int | GIF version | ||
| Description: Define the intersection of a class. Definition 7.35 of [TakeutiZaring] p. 44. For example, ∩ {{1, 3}, {1, 8}} = {1}. Compare this with the intersection of two classes, df-in 3163. (Contributed by NM, 18-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| df-int | ⊢ ∩ 𝐴 = {𝑥 ∣ ∀𝑦(𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦)} | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | 1 | cint 3874 | . 2 class ∩ 𝐴 | 
| 3 | vy | . . . . . . 7 setvar 𝑦 | |
| 4 | 3 | cv 1363 | . . . . . 6 class 𝑦 | 
| 5 | 4, 1 | wcel 2167 | . . . . 5 wff 𝑦 ∈ 𝐴 | 
| 6 | vx | . . . . . 6 setvar 𝑥 | |
| 7 | 6, 3 | wel 2168 | . . . . 5 wff 𝑥 ∈ 𝑦 | 
| 8 | 5, 7 | wi 4 | . . . 4 wff (𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦) | 
| 9 | 8, 3 | wal 1362 | . . 3 wff ∀𝑦(𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦) | 
| 10 | 9, 6 | cab 2182 | . 2 class {𝑥 ∣ ∀𝑦(𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦)} | 
| 11 | 2, 10 | wceq 1364 | 1 wff ∩ 𝐴 = {𝑥 ∣ ∀𝑦(𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦)} | 
| Colors of variables: wff set class | 
| This definition is referenced by: dfint2 3876 elint 3880 int0 3888 dfiin2g 3949 bdcint 15523 bdcriota 15529 | 
| Copyright terms: Public domain | W3C validator |