HomeHome Intuitionistic Logic Explorer
Theorem List (p. 39 of 137)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 3801-3900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremunissel 3801 Condition turning a subclass relationship for union into an equality. (Contributed by NM, 18-Jul-2006.)
(( 𝐴𝐵𝐵𝐴) → 𝐴 = 𝐵)
 
Theoremunissb 3802* Relationship involving membership, subset, and union. Exercise 5 of [Enderton] p. 26 and its converse. (Contributed by NM, 20-Sep-2003.)
( 𝐴𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)
 
Theoremuniss2 3803* A subclass condition on the members of two classes that implies a subclass relation on their unions. Proposition 8.6 of [TakeutiZaring] p. 59. (Contributed by NM, 22-Mar-2004.)
(∀𝑥𝐴𝑦𝐵 𝑥𝑦 𝐴 𝐵)
 
Theoremunidif 3804* If the difference 𝐴𝐵 contains the largest members of 𝐴, then the union of the difference is the union of 𝐴. (Contributed by NM, 22-Mar-2004.)
(∀𝑥𝐴𝑦 ∈ (𝐴𝐵)𝑥𝑦 (𝐴𝐵) = 𝐴)
 
Theoremssunieq 3805* Relationship implying union. (Contributed by NM, 10-Nov-1999.)
((𝐴𝐵 ∧ ∀𝑥𝐵 𝑥𝐴) → 𝐴 = 𝐵)
 
Theoremunimax 3806* Any member of a class is the largest of those members that it includes. (Contributed by NM, 13-Aug-2002.)
(𝐴𝐵 {𝑥𝐵𝑥𝐴} = 𝐴)
 
2.1.19  The intersection of a class
 
Syntaxcint 3807 Extend class notation to include the intersection of a class. Read: "intersection (of) 𝐴".
class 𝐴
 
Definitiondf-int 3808* Define the intersection of a class. Definition 7.35 of [TakeutiZaring] p. 44. For example, {{1, 3}, {1, 8}} = {1}. Compare this with the intersection of two classes, df-in 3108. (Contributed by NM, 18-Aug-1993.)
𝐴 = {𝑥 ∣ ∀𝑦(𝑦𝐴𝑥𝑦)}
 
Theoremdfint2 3809* Alternate definition of class intersection. (Contributed by NM, 28-Jun-1998.)
𝐴 = {𝑥 ∣ ∀𝑦𝐴 𝑥𝑦}
 
Theoreminteq 3810 Equality law for intersection. (Contributed by NM, 13-Sep-1999.)
(𝐴 = 𝐵 𝐴 = 𝐵)
 
Theoreminteqi 3811 Equality inference for class intersection. (Contributed by NM, 2-Sep-2003.)
𝐴 = 𝐵        𝐴 = 𝐵
 
Theoreminteqd 3812 Equality deduction for class intersection. (Contributed by NM, 2-Sep-2003.)
(𝜑𝐴 = 𝐵)       (𝜑 𝐴 = 𝐵)
 
Theoremelint 3813* Membership in class intersection. (Contributed by NM, 21-May-1994.)
𝐴 ∈ V       (𝐴 𝐵 ↔ ∀𝑥(𝑥𝐵𝐴𝑥))
 
Theoremelint2 3814* Membership in class intersection. (Contributed by NM, 14-Oct-1999.)
𝐴 ∈ V       (𝐴 𝐵 ↔ ∀𝑥𝐵 𝐴𝑥)
 
Theoremelintg 3815* Membership in class intersection, with the sethood requirement expressed as an antecedent. (Contributed by NM, 20-Nov-2003.)
(𝐴𝑉 → (𝐴 𝐵 ↔ ∀𝑥𝐵 𝐴𝑥))
 
Theoremelinti 3816 Membership in class intersection. (Contributed by NM, 14-Oct-1999.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
(𝐴 𝐵 → (𝐶𝐵𝐴𝐶))
 
Theoremnfint 3817 Bound-variable hypothesis builder for intersection. (Contributed by NM, 2-Feb-1997.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
𝑥𝐴       𝑥 𝐴
 
Theoremelintab 3818* Membership in the intersection of a class abstraction. (Contributed by NM, 30-Aug-1993.)
𝐴 ∈ V       (𝐴 {𝑥𝜑} ↔ ∀𝑥(𝜑𝐴𝑥))
 
Theoremelintrab 3819* Membership in the intersection of a class abstraction. (Contributed by NM, 17-Oct-1999.)
𝐴 ∈ V       (𝐴 {𝑥𝐵𝜑} ↔ ∀𝑥𝐵 (𝜑𝐴𝑥))
 
Theoremelintrabg 3820* Membership in the intersection of a class abstraction. (Contributed by NM, 17-Feb-2007.)
(𝐴𝑉 → (𝐴 {𝑥𝐵𝜑} ↔ ∀𝑥𝐵 (𝜑𝐴𝑥)))
 
Theoremint0 3821 The intersection of the empty set is the universal class. Exercise 2 of [TakeutiZaring] p. 44. (Contributed by NM, 18-Aug-1993.)
∅ = V
 
Theoremintss1 3822 An element of a class includes the intersection of the class. Exercise 4 of [TakeutiZaring] p. 44 (with correction), generalized to classes. (Contributed by NM, 18-Nov-1995.)
(𝐴𝐵 𝐵𝐴)
 
Theoremssint 3823* Subclass of a class intersection. Theorem 5.11(viii) of [Monk1] p. 52 and its converse. (Contributed by NM, 14-Oct-1999.)
(𝐴 𝐵 ↔ ∀𝑥𝐵 𝐴𝑥)
 
Theoremssintab 3824* Subclass of the intersection of a class abstraction. (Contributed by NM, 31-Jul-2006.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
(𝐴 {𝑥𝜑} ↔ ∀𝑥(𝜑𝐴𝑥))
 
Theoremssintub 3825* Subclass of the least upper bound. (Contributed by NM, 8-Aug-2000.)
𝐴 {𝑥𝐵𝐴𝑥}
 
Theoremssmin 3826* Subclass of the minimum value of class of supersets. (Contributed by NM, 10-Aug-2006.)
𝐴 {𝑥 ∣ (𝐴𝑥𝜑)}
 
Theoremintmin 3827* Any member of a class is the smallest of those members that include it. (Contributed by NM, 13-Aug-2002.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
(𝐴𝐵 {𝑥𝐵𝐴𝑥} = 𝐴)
 
Theoremintss 3828 Intersection of subclasses. (Contributed by NM, 14-Oct-1999.)
(𝐴𝐵 𝐵 𝐴)
 
Theoremintssunim 3829* The intersection of an inhabited set is a subclass of its union. (Contributed by NM, 29-Jul-2006.)
(∃𝑥 𝑥𝐴 𝐴 𝐴)
 
Theoremssintrab 3830* Subclass of the intersection of a restricted class builder. (Contributed by NM, 30-Jan-2015.)
(𝐴 {𝑥𝐵𝜑} ↔ ∀𝑥𝐵 (𝜑𝐴𝑥))
 
Theoremintssuni2m 3831* Subclass relationship for intersection and union. (Contributed by Jim Kingdon, 14-Aug-2018.)
((𝐴𝐵 ∧ ∃𝑥 𝑥𝐴) → 𝐴 𝐵)
 
Theoremintminss 3832* Under subset ordering, the intersection of a restricted class abstraction is less than or equal to any of its members. (Contributed by NM, 7-Sep-2013.)
(𝑥 = 𝐴 → (𝜑𝜓))       ((𝐴𝐵𝜓) → {𝑥𝐵𝜑} ⊆ 𝐴)
 
Theoremintmin2 3833* Any set is the smallest of all sets that include it. (Contributed by NM, 20-Sep-2003.)
𝐴 ∈ V        {𝑥𝐴𝑥} = 𝐴
 
Theoremintmin3 3834* Under subset ordering, the intersection of a class abstraction is less than or equal to any of its members. (Contributed by NM, 3-Jul-2005.)
(𝑥 = 𝐴 → (𝜑𝜓))    &   𝜓       (𝐴𝑉 {𝑥𝜑} ⊆ 𝐴)
 
Theoremintmin4 3835* Elimination of a conjunct in a class intersection. (Contributed by NM, 31-Jul-2006.)
(𝐴 {𝑥𝜑} → {𝑥 ∣ (𝐴𝑥𝜑)} = {𝑥𝜑})
 
Theoremintab 3836* The intersection of a special case of a class abstraction. 𝑦 may be free in 𝜑 and 𝐴, which can be thought of a 𝜑(𝑦) and 𝐴(𝑦). (Contributed by NM, 28-Jul-2006.) (Proof shortened by Mario Carneiro, 14-Nov-2016.)
𝐴 ∈ V    &   {𝑥 ∣ ∃𝑦(𝜑𝑥 = 𝐴)} ∈ V        {𝑥 ∣ ∀𝑦(𝜑𝐴𝑥)} = {𝑥 ∣ ∃𝑦(𝜑𝑥 = 𝐴)}
 
Theoremint0el 3837 The intersection of a class containing the empty set is empty. (Contributed by NM, 24-Apr-2004.)
(∅ ∈ 𝐴 𝐴 = ∅)
 
Theoremintun 3838 The class intersection of the union of two classes. Theorem 78 of [Suppes] p. 42. (Contributed by NM, 22-Sep-2002.)
(𝐴𝐵) = ( 𝐴 𝐵)
 
Theoremintpr 3839 The intersection of a pair is the intersection of its members. Theorem 71 of [Suppes] p. 42. (Contributed by NM, 14-Oct-1999.)
𝐴 ∈ V    &   𝐵 ∈ V        {𝐴, 𝐵} = (𝐴𝐵)
 
Theoremintprg 3840 The intersection of a pair is the intersection of its members. Closed form of intpr 3839. Theorem 71 of [Suppes] p. 42. (Contributed by FL, 27-Apr-2008.)
((𝐴𝑉𝐵𝑊) → {𝐴, 𝐵} = (𝐴𝐵))
 
Theoremintsng 3841 Intersection of a singleton. (Contributed by Stefan O'Rear, 22-Feb-2015.)
(𝐴𝑉 {𝐴} = 𝐴)
 
Theoremintsn 3842 The intersection of a singleton is its member. Theorem 70 of [Suppes] p. 41. (Contributed by NM, 29-Sep-2002.)
𝐴 ∈ V        {𝐴} = 𝐴
 
Theoremuniintsnr 3843* The union and intersection of a singleton are equal. See also eusn 3633. (Contributed by Jim Kingdon, 14-Aug-2018.)
(∃𝑥 𝐴 = {𝑥} → 𝐴 = 𝐴)
 
Theoremuniintabim 3844 The union and the intersection of a class abstraction are equal if there is a unique satisfying value of 𝜑(𝑥). (Contributed by Jim Kingdon, 14-Aug-2018.)
(∃!𝑥𝜑 {𝑥𝜑} = {𝑥𝜑})
 
Theoremintunsn 3845 Theorem joining a singleton to an intersection. (Contributed by NM, 29-Sep-2002.)
𝐵 ∈ V        (𝐴 ∪ {𝐵}) = ( 𝐴𝐵)
 
Theoremrint0 3846 Relative intersection of an empty set. (Contributed by Stefan O'Rear, 3-Apr-2015.)
(𝑋 = ∅ → (𝐴 𝑋) = 𝐴)
 
Theoremelrint 3847* Membership in a restricted intersection. (Contributed by Stefan O'Rear, 3-Apr-2015.)
(𝑋 ∈ (𝐴 𝐵) ↔ (𝑋𝐴 ∧ ∀𝑦𝐵 𝑋𝑦))
 
Theoremelrint2 3848* Membership in a restricted intersection. (Contributed by Stefan O'Rear, 3-Apr-2015.)
(𝑋𝐴 → (𝑋 ∈ (𝐴 𝐵) ↔ ∀𝑦𝐵 𝑋𝑦))
 
2.1.20  Indexed union and intersection
 
Syntaxciun 3849 Extend class notation to include indexed union. Note: Historically (prior to 21-Oct-2005), set.mm used the notation 𝑥𝐴𝐵, with the same union symbol as cuni 3772. While that syntax was unambiguous, it did not allow for LALR parsing of the syntax constructions in set.mm. The new syntax uses as distinguished symbol instead of and does allow LALR parsing. Thanks to Peter Backes for suggesting this change.
class 𝑥𝐴 𝐵
 
Syntaxciin 3850 Extend class notation to include indexed intersection. Note: Historically (prior to 21-Oct-2005), set.mm used the notation 𝑥𝐴𝐵, with the same intersection symbol as cint 3807. Although that syntax was unambiguous, it did not allow for LALR parsing of the syntax constructions in set.mm. The new syntax uses a distinguished symbol instead of and does allow LALR parsing. Thanks to Peter Backes for suggesting this change.
class 𝑥𝐴 𝐵
 
Definitiondf-iun 3851* Define indexed union. Definition indexed union in [Stoll] p. 45. In most applications, 𝐴 is independent of 𝑥 (although this is not required by the definition), and 𝐵 depends on 𝑥 i.e. can be read informally as 𝐵(𝑥). We call 𝑥 the index, 𝐴 the index set, and 𝐵 the indexed set. In most books, 𝑥𝐴 is written as a subscript or underneath a union symbol . We use a special union symbol to make it easier to distinguish from plain class union. In many theorems, you will see that 𝑥 and 𝐴 are in the same disjoint variable group (meaning 𝐴 cannot depend on 𝑥) and that 𝐵 and 𝑥 do not share a disjoint variable group (meaning that can be thought of as 𝐵(𝑥) i.e. can be substituted with a class expression containing 𝑥). An alternate definition tying indexed union to ordinary union is dfiun2 3883. Theorem uniiun 3902 provides a definition of ordinary union in terms of indexed union. (Contributed by NM, 27-Jun-1998.)
𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦𝐵}
 
Definitiondf-iin 3852* Define indexed intersection. Definition of [Stoll] p. 45. See the remarks for its sibling operation of indexed union df-iun 3851. An alternate definition tying indexed intersection to ordinary intersection is dfiin2 3884. Theorem intiin 3903 provides a definition of ordinary intersection in terms of indexed intersection. (Contributed by NM, 27-Jun-1998.)
𝑥𝐴 𝐵 = {𝑦 ∣ ∀𝑥𝐴 𝑦𝐵}
 
Theoremeliun 3853* Membership in indexed union. (Contributed by NM, 3-Sep-2003.)
(𝐴 𝑥𝐵 𝐶 ↔ ∃𝑥𝐵 𝐴𝐶)
 
Theoremeliin 3854* Membership in indexed intersection. (Contributed by NM, 3-Sep-2003.)
(𝐴𝑉 → (𝐴 𝑥𝐵 𝐶 ↔ ∀𝑥𝐵 𝐴𝐶))
 
Theoremiuncom 3855* Commutation of indexed unions. (Contributed by NM, 18-Dec-2008.)
𝑥𝐴 𝑦𝐵 𝐶 = 𝑦𝐵 𝑥𝐴 𝐶
 
Theoremiuncom4 3856 Commutation of union with indexed union. (Contributed by Mario Carneiro, 18-Jan-2014.)
𝑥𝐴 𝐵 = 𝑥𝐴 𝐵
 
Theoremiunconstm 3857* Indexed union of a constant class, i.e. where 𝐵 does not depend on 𝑥. (Contributed by Jim Kingdon, 15-Aug-2018.)
(∃𝑥 𝑥𝐴 𝑥𝐴 𝐵 = 𝐵)
 
Theoremiinconstm 3858* Indexed intersection of a constant class, i.e. where 𝐵 does not depend on 𝑥. (Contributed by Jim Kingdon, 19-Dec-2018.)
(∃𝑦 𝑦𝐴 𝑥𝐴 𝐵 = 𝐵)
 
Theoremiuniin 3859* Law combining indexed union with indexed intersection. Eq. 14 in [KuratowskiMostowski] p. 109. This theorem also appears as the last example at http://en.wikipedia.org/wiki/Union%5F%28set%5Ftheory%29. (Contributed by NM, 17-Aug-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
𝑥𝐴 𝑦𝐵 𝐶 𝑦𝐵 𝑥𝐴 𝐶
 
Theoremiunss1 3860* Subclass theorem for indexed union. (Contributed by NM, 10-Dec-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
(𝐴𝐵 𝑥𝐴 𝐶 𝑥𝐵 𝐶)
 
Theoremiinss1 3861* Subclass theorem for indexed union. (Contributed by NM, 24-Jan-2012.)
(𝐴𝐵 𝑥𝐵 𝐶 𝑥𝐴 𝐶)
 
Theoremiuneq1 3862* Equality theorem for indexed union. (Contributed by NM, 27-Jun-1998.)
(𝐴 = 𝐵 𝑥𝐴 𝐶 = 𝑥𝐵 𝐶)
 
Theoremiineq1 3863* Equality theorem for restricted existential quantifier. (Contributed by NM, 27-Jun-1998.)
(𝐴 = 𝐵 𝑥𝐴 𝐶 = 𝑥𝐵 𝐶)
 
Theoremss2iun 3864 Subclass theorem for indexed union. (Contributed by NM, 26-Nov-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
(∀𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵 𝑥𝐴 𝐶)
 
Theoremiuneq2 3865 Equality theorem for indexed union. (Contributed by NM, 22-Oct-2003.)
(∀𝑥𝐴 𝐵 = 𝐶 𝑥𝐴 𝐵 = 𝑥𝐴 𝐶)
 
Theoremiineq2 3866 Equality theorem for indexed intersection. (Contributed by NM, 22-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
(∀𝑥𝐴 𝐵 = 𝐶 𝑥𝐴 𝐵 = 𝑥𝐴 𝐶)
 
Theoremiuneq2i 3867 Equality inference for indexed union. (Contributed by NM, 22-Oct-2003.)
(𝑥𝐴𝐵 = 𝐶)        𝑥𝐴 𝐵 = 𝑥𝐴 𝐶
 
Theoremiineq2i 3868 Equality inference for indexed intersection. (Contributed by NM, 22-Oct-2003.)
(𝑥𝐴𝐵 = 𝐶)        𝑥𝐴 𝐵 = 𝑥𝐴 𝐶
 
Theoremiineq2d 3869 Equality deduction for indexed intersection. (Contributed by NM, 7-Dec-2011.)
𝑥𝜑    &   ((𝜑𝑥𝐴) → 𝐵 = 𝐶)       (𝜑 𝑥𝐴 𝐵 = 𝑥𝐴 𝐶)
 
Theoremiuneq2dv 3870* Equality deduction for indexed union. (Contributed by NM, 3-Aug-2004.)
((𝜑𝑥𝐴) → 𝐵 = 𝐶)       (𝜑 𝑥𝐴 𝐵 = 𝑥𝐴 𝐶)
 
Theoremiineq2dv 3871* Equality deduction for indexed intersection. (Contributed by NM, 3-Aug-2004.)
((𝜑𝑥𝐴) → 𝐵 = 𝐶)       (𝜑 𝑥𝐴 𝐵 = 𝑥𝐴 𝐶)
 
Theoremiuneq1d 3872* Equality theorem for indexed union, deduction version. (Contributed by Drahflow, 22-Oct-2015.)
(𝜑𝐴 = 𝐵)       (𝜑 𝑥𝐴 𝐶 = 𝑥𝐵 𝐶)
 
Theoremiuneq12d 3873* Equality deduction for indexed union, deduction version. (Contributed by Drahflow, 22-Oct-2015.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐷)       (𝜑 𝑥𝐴 𝐶 = 𝑥𝐵 𝐷)
 
Theoremiuneq2d 3874* Equality deduction for indexed union. (Contributed by Drahflow, 22-Oct-2015.)
(𝜑𝐵 = 𝐶)       (𝜑 𝑥𝐴 𝐵 = 𝑥𝐴 𝐶)
 
Theoremnfiunxy 3875* Bound-variable hypothesis builder for indexed union. (Contributed by Mario Carneiro, 25-Jan-2014.)
𝑦𝐴    &   𝑦𝐵       𝑦 𝑥𝐴 𝐵
 
Theoremnfiinxy 3876* Bound-variable hypothesis builder for indexed intersection. (Contributed by Mario Carneiro, 25-Jan-2014.)
𝑦𝐴    &   𝑦𝐵       𝑦 𝑥𝐴 𝐵
 
Theoremnfiunya 3877* Bound-variable hypothesis builder for indexed union. (Contributed by Mario Carneiro, 25-Jan-2014.)
𝑦𝐴    &   𝑦𝐵       𝑦 𝑥𝐴 𝐵
 
Theoremnfiinya 3878* Bound-variable hypothesis builder for indexed intersection. (Contributed by Mario Carneiro, 25-Jan-2014.)
𝑦𝐴    &   𝑦𝐵       𝑦 𝑥𝐴 𝐵
 
Theoremnfiu1 3879 Bound-variable hypothesis builder for indexed union. (Contributed by NM, 12-Oct-2003.)
𝑥 𝑥𝐴 𝐵
 
Theoremnfii1 3880 Bound-variable hypothesis builder for indexed intersection. (Contributed by NM, 15-Oct-2003.)
𝑥 𝑥𝐴 𝐵
 
Theoremdfiun2g 3881* Alternate definition of indexed union when 𝐵 is a set. Definition 15(a) of [Suppes] p. 44. (Contributed by NM, 23-Mar-2006.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
(∀𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
 
Theoremdfiin2g 3882* Alternate definition of indexed intersection when 𝐵 is a set. (Contributed by Jeff Hankins, 27-Aug-2009.)
(∀𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
 
Theoremdfiun2 3883* Alternate definition of indexed union when 𝐵 is a set. Definition 15(a) of [Suppes] p. 44. (Contributed by NM, 27-Jun-1998.) (Revised by David Abernethy, 19-Jun-2012.)
𝐵 ∈ V        𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}
 
Theoremdfiin2 3884* Alternate definition of indexed intersection when 𝐵 is a set. Definition 15(b) of [Suppes] p. 44. (Contributed by NM, 28-Jun-1998.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
𝐵 ∈ V        𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}
 
Theoremdfiunv2 3885* Define double indexed union. (Contributed by FL, 6-Nov-2013.)
𝑥𝐴 𝑦𝐵 𝐶 = {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝑧𝐶}
 
Theoremcbviun 3886* Rule used to change the bound variables in an indexed union, with the substitution specified implicitly by the hypothesis. (Contributed by NM, 26-Mar-2006.) (Revised by Andrew Salmon, 25-Jul-2011.)
𝑦𝐵    &   𝑥𝐶    &   (𝑥 = 𝑦𝐵 = 𝐶)        𝑥𝐴 𝐵 = 𝑦𝐴 𝐶
 
Theoremcbviin 3887* Change bound variables in an indexed intersection. (Contributed by Jeff Hankins, 26-Aug-2009.) (Revised by Mario Carneiro, 14-Oct-2016.)
𝑦𝐵    &   𝑥𝐶    &   (𝑥 = 𝑦𝐵 = 𝐶)        𝑥𝐴 𝐵 = 𝑦𝐴 𝐶
 
Theoremcbviunv 3888* Rule used to change the bound variables in an indexed union, with the substitution specified implicitly by the hypothesis. (Contributed by NM, 15-Sep-2003.)
(𝑥 = 𝑦𝐵 = 𝐶)        𝑥𝐴 𝐵 = 𝑦𝐴 𝐶
 
Theoremcbviinv 3889* Change bound variables in an indexed intersection. (Contributed by Jeff Hankins, 26-Aug-2009.)
(𝑥 = 𝑦𝐵 = 𝐶)        𝑥𝐴 𝐵 = 𝑦𝐴 𝐶
 
Theoremiunss 3890* Subset theorem for an indexed union. (Contributed by NM, 13-Sep-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
( 𝑥𝐴 𝐵𝐶 ↔ ∀𝑥𝐴 𝐵𝐶)
 
Theoremssiun 3891* Subset implication for an indexed union. (Contributed by NM, 3-Sep-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
(∃𝑥𝐴 𝐶𝐵𝐶 𝑥𝐴 𝐵)
 
Theoremssiun2 3892 Identity law for subset of an indexed union. (Contributed by NM, 12-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
(𝑥𝐴𝐵 𝑥𝐴 𝐵)
 
Theoremssiun2s 3893* Subset relationship for an indexed union. (Contributed by NM, 26-Oct-2003.)
(𝑥 = 𝐶𝐵 = 𝐷)       (𝐶𝐴𝐷 𝑥𝐴 𝐵)
 
Theoremiunss2 3894* A subclass condition on the members of two indexed classes 𝐶(𝑥) and 𝐷(𝑦) that implies a subclass relation on their indexed unions. Generalization of Proposition 8.6 of [TakeutiZaring] p. 59. Compare uniss2 3803. (Contributed by NM, 9-Dec-2004.)
(∀𝑥𝐴𝑦𝐵 𝐶𝐷 𝑥𝐴 𝐶 𝑦𝐵 𝐷)
 
Theoremiunab 3895* The indexed union of a class abstraction. (Contributed by NM, 27-Dec-2004.)
𝑥𝐴 {𝑦𝜑} = {𝑦 ∣ ∃𝑥𝐴 𝜑}
 
Theoremiunrab 3896* The indexed union of a restricted class abstraction. (Contributed by NM, 3-Jan-2004.) (Proof shortened by Mario Carneiro, 14-Nov-2016.)
𝑥𝐴 {𝑦𝐵𝜑} = {𝑦𝐵 ∣ ∃𝑥𝐴 𝜑}
 
Theoremiunxdif2 3897* Indexed union with a class difference as its index. (Contributed by NM, 10-Dec-2004.)
(𝑥 = 𝑦𝐶 = 𝐷)       (∀𝑥𝐴𝑦 ∈ (𝐴𝐵)𝐶𝐷 𝑦 ∈ (𝐴𝐵)𝐷 = 𝑥𝐴 𝐶)
 
Theoremssiinf 3898 Subset theorem for an indexed intersection. (Contributed by FL, 15-Oct-2012.) (Proof shortened by Mario Carneiro, 14-Oct-2016.)
𝑥𝐶       (𝐶 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝐶𝐵)
 
Theoremssiin 3899* Subset theorem for an indexed intersection. (Contributed by NM, 15-Oct-2003.)
(𝐶 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝐶𝐵)
 
Theoremiinss 3900* Subset implication for an indexed intersection. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
(∃𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵𝐶)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13614
  Copyright terms: Public domain < Previous  Next >