ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elint GIF version

Theorem elint 3837
Description: Membership in class intersection. (Contributed by NM, 21-May-1994.)
Hypothesis
Ref Expression
elint.1 𝐴 ∈ V
Assertion
Ref Expression
elint (𝐴 𝐵 ↔ ∀𝑥(𝑥𝐵𝐴𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem elint
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elint.1 . 2 𝐴 ∈ V
2 eleq1 2233 . . . 4 (𝑦 = 𝐴 → (𝑦𝑥𝐴𝑥))
32imbi2d 229 . . 3 (𝑦 = 𝐴 → ((𝑥𝐵𝑦𝑥) ↔ (𝑥𝐵𝐴𝑥)))
43albidv 1817 . 2 (𝑦 = 𝐴 → (∀𝑥(𝑥𝐵𝑦𝑥) ↔ ∀𝑥(𝑥𝐵𝐴𝑥)))
5 df-int 3832 . 2 𝐵 = {𝑦 ∣ ∀𝑥(𝑥𝐵𝑦𝑥)}
61, 4, 5elab2 2878 1 (𝐴 𝐵 ↔ ∀𝑥(𝑥𝐵𝐴𝑥))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wal 1346   = wceq 1348  wcel 2141  Vcvv 2730   cint 3831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-int 3832
This theorem is referenced by:  elint2  3838  elintab  3842  intss1  3846  intss  3852  intun  3862  intpr  3863  peano1  4578
  Copyright terms: Public domain W3C validator