![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elint | GIF version |
Description: Membership in class intersection. (Contributed by NM, 21-May-1994.) |
Ref | Expression |
---|---|
elint.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
elint | ⊢ (𝐴 ∈ ∩ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝐴 ∈ 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elint.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | eleq1 2240 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥)) | |
3 | 2 | imbi2d 230 | . . 3 ⊢ (𝑦 = 𝐴 → ((𝑥 ∈ 𝐵 → 𝑦 ∈ 𝑥) ↔ (𝑥 ∈ 𝐵 → 𝐴 ∈ 𝑥))) |
4 | 3 | albidv 1824 | . 2 ⊢ (𝑦 = 𝐴 → (∀𝑥(𝑥 ∈ 𝐵 → 𝑦 ∈ 𝑥) ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝐴 ∈ 𝑥))) |
5 | df-int 3847 | . 2 ⊢ ∩ 𝐵 = {𝑦 ∣ ∀𝑥(𝑥 ∈ 𝐵 → 𝑦 ∈ 𝑥)} | |
6 | 1, 4, 5 | elab2 2887 | 1 ⊢ (𝐴 ∈ ∩ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝐴 ∈ 𝑥)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∀wal 1351 = wceq 1353 ∈ wcel 2148 Vcvv 2739 ∩ cint 3846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 df-int 3847 |
This theorem is referenced by: elint2 3853 elintab 3857 intss1 3861 intss 3867 intun 3877 intpr 3878 peano1 4595 |
Copyright terms: Public domain | W3C validator |