ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elint GIF version

Theorem elint 3928
Description: Membership in class intersection. (Contributed by NM, 21-May-1994.)
Hypothesis
Ref Expression
elint.1 𝐴 ∈ V
Assertion
Ref Expression
elint (𝐴 𝐵 ↔ ∀𝑥(𝑥𝐵𝐴𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem elint
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elint.1 . 2 𝐴 ∈ V
2 eleq1 2292 . . . 4 (𝑦 = 𝐴 → (𝑦𝑥𝐴𝑥))
32imbi2d 230 . . 3 (𝑦 = 𝐴 → ((𝑥𝐵𝑦𝑥) ↔ (𝑥𝐵𝐴𝑥)))
43albidv 1870 . 2 (𝑦 = 𝐴 → (∀𝑥(𝑥𝐵𝑦𝑥) ↔ ∀𝑥(𝑥𝐵𝐴𝑥)))
5 df-int 3923 . 2 𝐵 = {𝑦 ∣ ∀𝑥(𝑥𝐵𝑦𝑥)}
61, 4, 5elab2 2951 1 (𝐴 𝐵 ↔ ∀𝑥(𝑥𝐵𝐴𝑥))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1393   = wceq 1395  wcel 2200  Vcvv 2799   cint 3922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-int 3923
This theorem is referenced by:  elint2  3929  elintab  3933  intss1  3937  intss  3943  intun  3953  intpr  3954  peano1  4683
  Copyright terms: Public domain W3C validator