Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcint GIF version

Theorem bdcint 15607
Description: The intersection of a setvar is a bounded class. (Contributed by BJ, 16-Oct-2019.)
Assertion
Ref Expression
bdcint BOUNDED 𝑥

Proof of Theorem bdcint
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-bdel 15551 . . . . 5 BOUNDED 𝑦𝑧
21ax-bdal 15548 . . . 4 BOUNDED𝑧𝑥 𝑦𝑧
3 df-ral 2480 . . . 4 (∀𝑧𝑥 𝑦𝑧 ↔ ∀𝑧(𝑧𝑥𝑦𝑧))
42, 3bd0 15554 . . 3 BOUNDED𝑧(𝑧𝑥𝑦𝑧)
54bdcab 15579 . 2 BOUNDED {𝑦 ∣ ∀𝑧(𝑧𝑥𝑦𝑧)}
6 df-int 3876 . 2 𝑥 = {𝑦 ∣ ∀𝑧(𝑧𝑥𝑦𝑧)}
75, 6bdceqir 15574 1 BOUNDED 𝑥
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1362  {cab 2182  wral 2475   cint 3875  BOUNDED wbdc 15570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-4 1524  ax-17 1540  ax-ial 1548  ax-ext 2178  ax-bd0 15543  ax-bdal 15548  ax-bdel 15551  ax-bdsb 15552
This theorem depends on definitions:  df-bi 117  df-clab 2183  df-cleq 2189  df-clel 2192  df-ral 2480  df-int 3876  df-bdc 15571
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator