Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcint GIF version

Theorem bdcint 16012
Description: The intersection of a setvar is a bounded class. (Contributed by BJ, 16-Oct-2019.)
Assertion
Ref Expression
bdcint BOUNDED 𝑥

Proof of Theorem bdcint
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-bdel 15956 . . . . 5 BOUNDED 𝑦𝑧
21ax-bdal 15953 . . . 4 BOUNDED𝑧𝑥 𝑦𝑧
3 df-ral 2491 . . . 4 (∀𝑧𝑥 𝑦𝑧 ↔ ∀𝑧(𝑧𝑥𝑦𝑧))
42, 3bd0 15959 . . 3 BOUNDED𝑧(𝑧𝑥𝑦𝑧)
54bdcab 15984 . 2 BOUNDED {𝑦 ∣ ∀𝑧(𝑧𝑥𝑦𝑧)}
6 df-int 3900 . 2 𝑥 = {𝑦 ∣ ∀𝑧(𝑧𝑥𝑦𝑧)}
75, 6bdceqir 15979 1 BOUNDED 𝑥
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1371  {cab 2193  wral 2486   cint 3899  BOUNDED wbdc 15975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-4 1534  ax-17 1550  ax-ial 1558  ax-ext 2189  ax-bd0 15948  ax-bdal 15953  ax-bdel 15956  ax-bdsb 15957
This theorem depends on definitions:  df-bi 117  df-clab 2194  df-cleq 2200  df-clel 2203  df-ral 2491  df-int 3900  df-bdc 15976
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator