Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcint GIF version

Theorem bdcint 16240
Description: The intersection of a setvar is a bounded class. (Contributed by BJ, 16-Oct-2019.)
Assertion
Ref Expression
bdcint BOUNDED 𝑥

Proof of Theorem bdcint
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-bdel 16184 . . . . 5 BOUNDED 𝑦𝑧
21ax-bdal 16181 . . . 4 BOUNDED𝑧𝑥 𝑦𝑧
3 df-ral 2513 . . . 4 (∀𝑧𝑥 𝑦𝑧 ↔ ∀𝑧(𝑧𝑥𝑦𝑧))
42, 3bd0 16187 . . 3 BOUNDED𝑧(𝑧𝑥𝑦𝑧)
54bdcab 16212 . 2 BOUNDED {𝑦 ∣ ∀𝑧(𝑧𝑥𝑦𝑧)}
6 df-int 3924 . 2 𝑥 = {𝑦 ∣ ∀𝑧(𝑧𝑥𝑦𝑧)}
75, 6bdceqir 16207 1 BOUNDED 𝑥
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1393  {cab 2215  wral 2508   cint 3923  BOUNDED wbdc 16203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-4 1556  ax-17 1572  ax-ial 1580  ax-ext 2211  ax-bd0 16176  ax-bdal 16181  ax-bdel 16184  ax-bdsb 16185
This theorem depends on definitions:  df-bi 117  df-clab 2216  df-cleq 2222  df-clel 2225  df-ral 2513  df-int 3924  df-bdc 16204
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator