Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcint GIF version

Theorem bdcint 13912
Description: The intersection of a setvar is a bounded class. (Contributed by BJ, 16-Oct-2019.)
Assertion
Ref Expression
bdcint BOUNDED 𝑥

Proof of Theorem bdcint
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-bdel 13856 . . . . 5 BOUNDED 𝑦𝑧
21ax-bdal 13853 . . . 4 BOUNDED𝑧𝑥 𝑦𝑧
3 df-ral 2453 . . . 4 (∀𝑧𝑥 𝑦𝑧 ↔ ∀𝑧(𝑧𝑥𝑦𝑧))
42, 3bd0 13859 . . 3 BOUNDED𝑧(𝑧𝑥𝑦𝑧)
54bdcab 13884 . 2 BOUNDED {𝑦 ∣ ∀𝑧(𝑧𝑥𝑦𝑧)}
6 df-int 3832 . 2 𝑥 = {𝑦 ∣ ∀𝑧(𝑧𝑥𝑦𝑧)}
75, 6bdceqir 13879 1 BOUNDED 𝑥
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1346  {cab 2156  wral 2448   cint 3831  BOUNDED wbdc 13875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-17 1519  ax-ial 1527  ax-ext 2152  ax-bd0 13848  ax-bdal 13853  ax-bdel 13856  ax-bdsb 13857
This theorem depends on definitions:  df-bi 116  df-clab 2157  df-cleq 2163  df-clel 2166  df-ral 2453  df-int 3832  df-bdc 13876
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator