Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcint GIF version

Theorem bdcint 13759
Description: The intersection of a setvar is a bounded class. (Contributed by BJ, 16-Oct-2019.)
Assertion
Ref Expression
bdcint BOUNDED 𝑥

Proof of Theorem bdcint
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-bdel 13703 . . . . 5 BOUNDED 𝑦𝑧
21ax-bdal 13700 . . . 4 BOUNDED𝑧𝑥 𝑦𝑧
3 df-ral 2449 . . . 4 (∀𝑧𝑥 𝑦𝑧 ↔ ∀𝑧(𝑧𝑥𝑦𝑧))
42, 3bd0 13706 . . 3 BOUNDED𝑧(𝑧𝑥𝑦𝑧)
54bdcab 13731 . 2 BOUNDED {𝑦 ∣ ∀𝑧(𝑧𝑥𝑦𝑧)}
6 df-int 3825 . 2 𝑥 = {𝑦 ∣ ∀𝑧(𝑧𝑥𝑦𝑧)}
75, 6bdceqir 13726 1 BOUNDED 𝑥
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1341  {cab 2151  wral 2444   cint 3824  BOUNDED wbdc 13722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-17 1514  ax-ial 1522  ax-ext 2147  ax-bd0 13695  ax-bdal 13700  ax-bdel 13703  ax-bdsb 13704
This theorem depends on definitions:  df-bi 116  df-clab 2152  df-cleq 2158  df-clel 2161  df-ral 2449  df-int 3825  df-bdc 13723
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator