![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdcint | GIF version |
Description: The intersection of a setvar is a bounded class. (Contributed by BJ, 16-Oct-2019.) |
Ref | Expression |
---|---|
bdcint | ⊢ BOUNDED ∩ 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-bdel 15251 | . . . . 5 ⊢ BOUNDED 𝑦 ∈ 𝑧 | |
2 | 1 | ax-bdal 15248 | . . . 4 ⊢ BOUNDED ∀𝑧 ∈ 𝑥 𝑦 ∈ 𝑧 |
3 | df-ral 2477 | . . . 4 ⊢ (∀𝑧 ∈ 𝑥 𝑦 ∈ 𝑧 ↔ ∀𝑧(𝑧 ∈ 𝑥 → 𝑦 ∈ 𝑧)) | |
4 | 2, 3 | bd0 15254 | . . 3 ⊢ BOUNDED ∀𝑧(𝑧 ∈ 𝑥 → 𝑦 ∈ 𝑧) |
5 | 4 | bdcab 15279 | . 2 ⊢ BOUNDED {𝑦 ∣ ∀𝑧(𝑧 ∈ 𝑥 → 𝑦 ∈ 𝑧)} |
6 | df-int 3871 | . 2 ⊢ ∩ 𝑥 = {𝑦 ∣ ∀𝑧(𝑧 ∈ 𝑥 → 𝑦 ∈ 𝑧)} | |
7 | 5, 6 | bdceqir 15274 | 1 ⊢ BOUNDED ∩ 𝑥 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1362 {cab 2179 ∀wral 2472 ∩ cint 3870 BOUNDED wbdc 15270 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 ax-ext 2175 ax-bd0 15243 ax-bdal 15248 ax-bdel 15251 ax-bdsb 15252 |
This theorem depends on definitions: df-bi 117 df-clab 2180 df-cleq 2186 df-clel 2189 df-ral 2477 df-int 3871 df-bdc 15271 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |