Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdcint | GIF version |
Description: The intersection of a setvar is a bounded class. (Contributed by BJ, 16-Oct-2019.) |
Ref | Expression |
---|---|
bdcint | ⊢ BOUNDED ∩ 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-bdel 13856 | . . . . 5 ⊢ BOUNDED 𝑦 ∈ 𝑧 | |
2 | 1 | ax-bdal 13853 | . . . 4 ⊢ BOUNDED ∀𝑧 ∈ 𝑥 𝑦 ∈ 𝑧 |
3 | df-ral 2453 | . . . 4 ⊢ (∀𝑧 ∈ 𝑥 𝑦 ∈ 𝑧 ↔ ∀𝑧(𝑧 ∈ 𝑥 → 𝑦 ∈ 𝑧)) | |
4 | 2, 3 | bd0 13859 | . . 3 ⊢ BOUNDED ∀𝑧(𝑧 ∈ 𝑥 → 𝑦 ∈ 𝑧) |
5 | 4 | bdcab 13884 | . 2 ⊢ BOUNDED {𝑦 ∣ ∀𝑧(𝑧 ∈ 𝑥 → 𝑦 ∈ 𝑧)} |
6 | df-int 3832 | . 2 ⊢ ∩ 𝑥 = {𝑦 ∣ ∀𝑧(𝑧 ∈ 𝑥 → 𝑦 ∈ 𝑧)} | |
7 | 5, 6 | bdceqir 13879 | 1 ⊢ BOUNDED ∩ 𝑥 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1346 {cab 2156 ∀wral 2448 ∩ cint 3831 BOUNDED wbdc 13875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-17 1519 ax-ial 1527 ax-ext 2152 ax-bd0 13848 ax-bdal 13853 ax-bdel 13856 ax-bdsb 13857 |
This theorem depends on definitions: df-bi 116 df-clab 2157 df-cleq 2163 df-clel 2166 df-ral 2453 df-int 3832 df-bdc 13876 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |