Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdcint | GIF version |
Description: The intersection of a setvar is a bounded class. (Contributed by BJ, 16-Oct-2019.) |
Ref | Expression |
---|---|
bdcint | ⊢ BOUNDED ∩ 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-bdel 13703 | . . . . 5 ⊢ BOUNDED 𝑦 ∈ 𝑧 | |
2 | 1 | ax-bdal 13700 | . . . 4 ⊢ BOUNDED ∀𝑧 ∈ 𝑥 𝑦 ∈ 𝑧 |
3 | df-ral 2449 | . . . 4 ⊢ (∀𝑧 ∈ 𝑥 𝑦 ∈ 𝑧 ↔ ∀𝑧(𝑧 ∈ 𝑥 → 𝑦 ∈ 𝑧)) | |
4 | 2, 3 | bd0 13706 | . . 3 ⊢ BOUNDED ∀𝑧(𝑧 ∈ 𝑥 → 𝑦 ∈ 𝑧) |
5 | 4 | bdcab 13731 | . 2 ⊢ BOUNDED {𝑦 ∣ ∀𝑧(𝑧 ∈ 𝑥 → 𝑦 ∈ 𝑧)} |
6 | df-int 3825 | . 2 ⊢ ∩ 𝑥 = {𝑦 ∣ ∀𝑧(𝑧 ∈ 𝑥 → 𝑦 ∈ 𝑧)} | |
7 | 5, 6 | bdceqir 13726 | 1 ⊢ BOUNDED ∩ 𝑥 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1341 {cab 2151 ∀wral 2444 ∩ cint 3824 BOUNDED wbdc 13722 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 ax-ext 2147 ax-bd0 13695 ax-bdal 13700 ax-bdel 13703 ax-bdsb 13704 |
This theorem depends on definitions: df-bi 116 df-clab 2152 df-cleq 2158 df-clel 2161 df-ral 2449 df-int 3825 df-bdc 13723 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |