| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bdcint | GIF version | ||
| Description: The intersection of a setvar is a bounded class. (Contributed by BJ, 16-Oct-2019.) |
| Ref | Expression |
|---|---|
| bdcint | ⊢ BOUNDED ∩ 𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-bdel 16184 | . . . . 5 ⊢ BOUNDED 𝑦 ∈ 𝑧 | |
| 2 | 1 | ax-bdal 16181 | . . . 4 ⊢ BOUNDED ∀𝑧 ∈ 𝑥 𝑦 ∈ 𝑧 |
| 3 | df-ral 2513 | . . . 4 ⊢ (∀𝑧 ∈ 𝑥 𝑦 ∈ 𝑧 ↔ ∀𝑧(𝑧 ∈ 𝑥 → 𝑦 ∈ 𝑧)) | |
| 4 | 2, 3 | bd0 16187 | . . 3 ⊢ BOUNDED ∀𝑧(𝑧 ∈ 𝑥 → 𝑦 ∈ 𝑧) |
| 5 | 4 | bdcab 16212 | . 2 ⊢ BOUNDED {𝑦 ∣ ∀𝑧(𝑧 ∈ 𝑥 → 𝑦 ∈ 𝑧)} |
| 6 | df-int 3924 | . 2 ⊢ ∩ 𝑥 = {𝑦 ∣ ∀𝑧(𝑧 ∈ 𝑥 → 𝑦 ∈ 𝑧)} | |
| 7 | 5, 6 | bdceqir 16207 | 1 ⊢ BOUNDED ∩ 𝑥 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1393 {cab 2215 ∀wral 2508 ∩ cint 3923 BOUNDED wbdc 16203 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 ax-ext 2211 ax-bd0 16176 ax-bdal 16181 ax-bdel 16184 ax-bdsb 16185 |
| This theorem depends on definitions: df-bi 117 df-clab 2216 df-cleq 2222 df-clel 2225 df-ral 2513 df-int 3924 df-bdc 16204 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |