Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfint2 | GIF version |
Description: Alternate definition of class intersection. (Contributed by NM, 28-Jun-1998.) |
Ref | Expression |
---|---|
dfint2 | ⊢ ∩ 𝐴 = {𝑥 ∣ ∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-int 3832 | . 2 ⊢ ∩ 𝐴 = {𝑥 ∣ ∀𝑦(𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦)} | |
2 | df-ral 2453 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ↔ ∀𝑦(𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦)) | |
3 | 2 | abbii 2286 | . 2 ⊢ {𝑥 ∣ ∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦} = {𝑥 ∣ ∀𝑦(𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦)} |
4 | 1, 3 | eqtr4i 2194 | 1 ⊢ ∩ 𝐴 = {𝑥 ∣ ∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦} |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1346 = wceq 1348 ∈ wcel 2141 {cab 2156 ∀wral 2448 ∩ cint 3831 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-ral 2453 df-int 3832 |
This theorem is referenced by: inteq 3834 nfint 3841 intiin 3927 |
Copyright terms: Public domain | W3C validator |