ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfint2 GIF version

Theorem dfint2 3826
Description: Alternate definition of class intersection. (Contributed by NM, 28-Jun-1998.)
Assertion
Ref Expression
dfint2 𝐴 = {𝑥 ∣ ∀𝑦𝐴 𝑥𝑦}
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem dfint2
StepHypRef Expression
1 df-int 3825 . 2 𝐴 = {𝑥 ∣ ∀𝑦(𝑦𝐴𝑥𝑦)}
2 df-ral 2449 . . 3 (∀𝑦𝐴 𝑥𝑦 ↔ ∀𝑦(𝑦𝐴𝑥𝑦))
32abbii 2282 . 2 {𝑥 ∣ ∀𝑦𝐴 𝑥𝑦} = {𝑥 ∣ ∀𝑦(𝑦𝐴𝑥𝑦)}
41, 3eqtr4i 2189 1 𝐴 = {𝑥 ∣ ∀𝑦𝐴 𝑥𝑦}
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1341   = wceq 1343  wcel 2136  {cab 2151  wral 2444   cint 3824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-ral 2449  df-int 3825
This theorem is referenced by:  inteq  3827  nfint  3834  intiin  3920
  Copyright terms: Public domain W3C validator