| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfint2 | GIF version | ||
| Description: Alternate definition of class intersection. (Contributed by NM, 28-Jun-1998.) |
| Ref | Expression |
|---|---|
| dfint2 | ⊢ ∩ 𝐴 = {𝑥 ∣ ∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-int 3892 | . 2 ⊢ ∩ 𝐴 = {𝑥 ∣ ∀𝑦(𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦)} | |
| 2 | df-ral 2490 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ↔ ∀𝑦(𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦)) | |
| 3 | 2 | abbii 2322 | . 2 ⊢ {𝑥 ∣ ∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦} = {𝑥 ∣ ∀𝑦(𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦)} |
| 4 | 1, 3 | eqtr4i 2230 | 1 ⊢ ∩ 𝐴 = {𝑥 ∣ ∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦} |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1371 = wceq 1373 ∈ wcel 2177 {cab 2192 ∀wral 2485 ∩ cint 3891 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-ral 2490 df-int 3892 |
| This theorem is referenced by: inteq 3894 nfint 3901 intiin 3988 |
| Copyright terms: Public domain | W3C validator |