| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-n0 | GIF version | ||
| Description: Define the set of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.) |
| Ref | Expression |
|---|---|
| df-n0 | ⊢ ℕ0 = (ℕ ∪ {0}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cn0 9302 | . 2 class ℕ0 | |
| 2 | cn 9043 | . . 3 class ℕ | |
| 3 | cc0 7932 | . . . 4 class 0 | |
| 4 | 3 | csn 3634 | . . 3 class {0} |
| 5 | 2, 4 | cun 3165 | . 2 class (ℕ ∪ {0}) |
| 6 | 1, 5 | wceq 1373 | 1 wff ℕ0 = (ℕ ∪ {0}) |
| Colors of variables: wff set class |
| This definition is referenced by: elnn0 9304 nnssnn0 9305 nn0ssre 9306 nn0ex 9308 dfn2 9315 nn0addcl 9337 nn0mulcl 9338 nn0ssz 9397 dvdsprmpweqnn 12703 |
| Copyright terms: Public domain | W3C validator |