| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > df-n0 | GIF version | ||
| Description: Define the set of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.) | 
| Ref | Expression | 
|---|---|
| df-n0 | ⊢ ℕ0 = (ℕ ∪ {0}) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cn0 9249 | . 2 class ℕ0 | |
| 2 | cn 8990 | . . 3 class ℕ | |
| 3 | cc0 7879 | . . . 4 class 0 | |
| 4 | 3 | csn 3622 | . . 3 class {0} | 
| 5 | 2, 4 | cun 3155 | . 2 class (ℕ ∪ {0}) | 
| 6 | 1, 5 | wceq 1364 | 1 wff ℕ0 = (ℕ ∪ {0}) | 
| Colors of variables: wff set class | 
| This definition is referenced by: elnn0 9251 nnssnn0 9252 nn0ssre 9253 nn0ex 9255 dfn2 9262 nn0addcl 9284 nn0mulcl 9285 nn0ssz 9344 dvdsprmpweqnn 12505 | 
| Copyright terms: Public domain | W3C validator |