ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0ssre GIF version

Theorem nn0ssre 9369
Description: Nonnegative integers are a subset of the reals. (Contributed by Raph Levien, 10-Dec-2002.)
Assertion
Ref Expression
nn0ssre 0 ⊆ ℝ

Proof of Theorem nn0ssre
StepHypRef Expression
1 df-n0 9366 . 2 0 = (ℕ ∪ {0})
2 nnssre 9110 . . 3 ℕ ⊆ ℝ
3 0re 8142 . . . 4 0 ∈ ℝ
4 snssi 3811 . . . 4 (0 ∈ ℝ → {0} ⊆ ℝ)
53, 4ax-mp 5 . . 3 {0} ⊆ ℝ
62, 5unssi 3379 . 2 (ℕ ∪ {0}) ⊆ ℝ
71, 6eqsstri 3256 1 0 ⊆ ℝ
Colors of variables: wff set class
Syntax hints:  wcel 2200  cun 3195  wss 3197  {csn 3666  cr 7994  0cc0 7995  cn 9106  0cn0 9365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-sep 4201  ax-cnex 8086  ax-resscn 8087  ax-1re 8089  ax-addrcl 8092  ax-rnegex 8104
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-int 3923  df-inn 9107  df-n0 9366
This theorem is referenced by:  nn0sscn  9370  nn0re  9374  nn0rei  9376  nn0red  9419
  Copyright terms: Public domain W3C validator