| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0ssre | GIF version | ||
| Description: Nonnegative integers are a subset of the reals. (Contributed by Raph Levien, 10-Dec-2002.) |
| Ref | Expression |
|---|---|
| nn0ssre | ⊢ ℕ0 ⊆ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-n0 9366 | . 2 ⊢ ℕ0 = (ℕ ∪ {0}) | |
| 2 | nnssre 9110 | . . 3 ⊢ ℕ ⊆ ℝ | |
| 3 | 0re 8142 | . . . 4 ⊢ 0 ∈ ℝ | |
| 4 | snssi 3811 | . . . 4 ⊢ (0 ∈ ℝ → {0} ⊆ ℝ) | |
| 5 | 3, 4 | ax-mp 5 | . . 3 ⊢ {0} ⊆ ℝ |
| 6 | 2, 5 | unssi 3379 | . 2 ⊢ (ℕ ∪ {0}) ⊆ ℝ |
| 7 | 1, 6 | eqsstri 3256 | 1 ⊢ ℕ0 ⊆ ℝ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 ∪ cun 3195 ⊆ wss 3197 {csn 3666 ℝcr 7994 0cc0 7995 ℕcn 9106 ℕ0cn0 9365 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-sep 4201 ax-cnex 8086 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 ax-rnegex 8104 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-int 3923 df-inn 9107 df-n0 9366 |
| This theorem is referenced by: nn0sscn 9370 nn0re 9374 nn0rei 9376 nn0red 9419 |
| Copyright terms: Public domain | W3C validator |