ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0ssre GIF version

Theorem nn0ssre 9244
Description: Nonnegative integers are a subset of the reals. (Contributed by Raph Levien, 10-Dec-2002.)
Assertion
Ref Expression
nn0ssre 0 ⊆ ℝ

Proof of Theorem nn0ssre
StepHypRef Expression
1 df-n0 9241 . 2 0 = (ℕ ∪ {0})
2 nnssre 8986 . . 3 ℕ ⊆ ℝ
3 0re 8019 . . . 4 0 ∈ ℝ
4 snssi 3762 . . . 4 (0 ∈ ℝ → {0} ⊆ ℝ)
53, 4ax-mp 5 . . 3 {0} ⊆ ℝ
62, 5unssi 3334 . 2 (ℕ ∪ {0}) ⊆ ℝ
71, 6eqsstri 3211 1 0 ⊆ ℝ
Colors of variables: wff set class
Syntax hints:  wcel 2164  cun 3151  wss 3153  {csn 3618  cr 7871  0cc0 7872  cn 8982  0cn0 9240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-sep 4147  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969  ax-rnegex 7981
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-sn 3624  df-int 3871  df-inn 8983  df-n0 9241
This theorem is referenced by:  nn0sscn  9245  nn0re  9249  nn0rei  9251  nn0red  9294
  Copyright terms: Public domain W3C validator