ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0ssre GIF version

Theorem nn0ssre 9319
Description: Nonnegative integers are a subset of the reals. (Contributed by Raph Levien, 10-Dec-2002.)
Assertion
Ref Expression
nn0ssre 0 ⊆ ℝ

Proof of Theorem nn0ssre
StepHypRef Expression
1 df-n0 9316 . 2 0 = (ℕ ∪ {0})
2 nnssre 9060 . . 3 ℕ ⊆ ℝ
3 0re 8092 . . . 4 0 ∈ ℝ
4 snssi 3783 . . . 4 (0 ∈ ℝ → {0} ⊆ ℝ)
53, 4ax-mp 5 . . 3 {0} ⊆ ℝ
62, 5unssi 3352 . 2 (ℕ ∪ {0}) ⊆ ℝ
71, 6eqsstri 3229 1 0 ⊆ ℝ
Colors of variables: wff set class
Syntax hints:  wcel 2177  cun 3168  wss 3170  {csn 3638  cr 7944  0cc0 7945  cn 9056  0cn0 9315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188  ax-sep 4170  ax-cnex 8036  ax-resscn 8037  ax-1re 8039  ax-addrcl 8042  ax-rnegex 8054
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-sn 3644  df-int 3892  df-inn 9057  df-n0 9316
This theorem is referenced by:  nn0sscn  9320  nn0re  9324  nn0rei  9326  nn0red  9369
  Copyright terms: Public domain W3C validator