ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0ssre GIF version

Theorem nn0ssre 9118
Description: Nonnegative integers are a subset of the reals. (Contributed by Raph Levien, 10-Dec-2002.)
Assertion
Ref Expression
nn0ssre 0 ⊆ ℝ

Proof of Theorem nn0ssre
StepHypRef Expression
1 df-n0 9115 . 2 0 = (ℕ ∪ {0})
2 nnssre 8861 . . 3 ℕ ⊆ ℝ
3 0re 7899 . . . 4 0 ∈ ℝ
4 snssi 3717 . . . 4 (0 ∈ ℝ → {0} ⊆ ℝ)
53, 4ax-mp 5 . . 3 {0} ⊆ ℝ
62, 5unssi 3297 . 2 (ℕ ∪ {0}) ⊆ ℝ
71, 6eqsstri 3174 1 0 ⊆ ℝ
Colors of variables: wff set class
Syntax hints:  wcel 2136  cun 3114  wss 3116  {csn 3576  cr 7752  0cc0 7753  cn 8857  0cn0 9114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-sep 4100  ax-cnex 7844  ax-resscn 7845  ax-1re 7847  ax-addrcl 7850  ax-rnegex 7862
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-sn 3582  df-int 3825  df-inn 8858  df-n0 9115
This theorem is referenced by:  nn0sscn  9119  nn0re  9123  nn0rei  9125  nn0red  9168
  Copyright terms: Public domain W3C validator