Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nn0ssre | GIF version |
Description: Nonnegative integers are a subset of the reals. (Contributed by Raph Levien, 10-Dec-2002.) |
Ref | Expression |
---|---|
nn0ssre | ⊢ ℕ0 ⊆ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-n0 9115 | . 2 ⊢ ℕ0 = (ℕ ∪ {0}) | |
2 | nnssre 8861 | . . 3 ⊢ ℕ ⊆ ℝ | |
3 | 0re 7899 | . . . 4 ⊢ 0 ∈ ℝ | |
4 | snssi 3717 | . . . 4 ⊢ (0 ∈ ℝ → {0} ⊆ ℝ) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ {0} ⊆ ℝ |
6 | 2, 5 | unssi 3297 | . 2 ⊢ (ℕ ∪ {0}) ⊆ ℝ |
7 | 1, 6 | eqsstri 3174 | 1 ⊢ ℕ0 ⊆ ℝ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 ∪ cun 3114 ⊆ wss 3116 {csn 3576 ℝcr 7752 0cc0 7753 ℕcn 8857 ℕ0cn0 9114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-sep 4100 ax-cnex 7844 ax-resscn 7845 ax-1re 7847 ax-addrcl 7850 ax-rnegex 7862 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-int 3825 df-inn 8858 df-n0 9115 |
This theorem is referenced by: nn0sscn 9119 nn0re 9123 nn0rei 9125 nn0red 9168 |
Copyright terms: Public domain | W3C validator |