ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0ssre GIF version

Theorem nn0ssre 9253
Description: Nonnegative integers are a subset of the reals. (Contributed by Raph Levien, 10-Dec-2002.)
Assertion
Ref Expression
nn0ssre 0 ⊆ ℝ

Proof of Theorem nn0ssre
StepHypRef Expression
1 df-n0 9250 . 2 0 = (ℕ ∪ {0})
2 nnssre 8994 . . 3 ℕ ⊆ ℝ
3 0re 8026 . . . 4 0 ∈ ℝ
4 snssi 3766 . . . 4 (0 ∈ ℝ → {0} ⊆ ℝ)
53, 4ax-mp 5 . . 3 {0} ⊆ ℝ
62, 5unssi 3338 . 2 (ℕ ∪ {0}) ⊆ ℝ
71, 6eqsstri 3215 1 0 ⊆ ℝ
Colors of variables: wff set class
Syntax hints:  wcel 2167  cun 3155  wss 3157  {csn 3622  cr 7878  0cc0 7879  cn 8990  0cn0 9249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-sep 4151  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976  ax-rnegex 7988
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3628  df-int 3875  df-inn 8991  df-n0 9250
This theorem is referenced by:  nn0sscn  9254  nn0re  9258  nn0rei  9260  nn0red  9303
  Copyright terms: Public domain W3C validator