| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0ssre | GIF version | ||
| Description: Nonnegative integers are a subset of the reals. (Contributed by Raph Levien, 10-Dec-2002.) |
| Ref | Expression |
|---|---|
| nn0ssre | ⊢ ℕ0 ⊆ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-n0 9295 | . 2 ⊢ ℕ0 = (ℕ ∪ {0}) | |
| 2 | nnssre 9039 | . . 3 ⊢ ℕ ⊆ ℝ | |
| 3 | 0re 8071 | . . . 4 ⊢ 0 ∈ ℝ | |
| 4 | snssi 3776 | . . . 4 ⊢ (0 ∈ ℝ → {0} ⊆ ℝ) | |
| 5 | 3, 4 | ax-mp 5 | . . 3 ⊢ {0} ⊆ ℝ |
| 6 | 2, 5 | unssi 3347 | . 2 ⊢ (ℕ ∪ {0}) ⊆ ℝ |
| 7 | 1, 6 | eqsstri 3224 | 1 ⊢ ℕ0 ⊆ ℝ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2175 ∪ cun 3163 ⊆ wss 3165 {csn 3632 ℝcr 7923 0cc0 7924 ℕcn 9035 ℕ0cn0 9294 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-sep 4161 ax-cnex 8015 ax-resscn 8016 ax-1re 8018 ax-addrcl 8021 ax-rnegex 8033 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-sn 3638 df-int 3885 df-inn 9036 df-n0 9295 |
| This theorem is referenced by: nn0sscn 9299 nn0re 9303 nn0rei 9305 nn0red 9348 |
| Copyright terms: Public domain | W3C validator |