ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfn2 GIF version

Theorem dfn2 8997
Description: The set of positive integers defined in terms of nonnegative integers. (Contributed by NM, 23-Sep-2007.) (Proof shortened by Mario Carneiro, 13-Feb-2013.)
Assertion
Ref Expression
dfn2 ℕ = (ℕ0 ∖ {0})

Proof of Theorem dfn2
StepHypRef Expression
1 df-n0 8985 . . 3 0 = (ℕ ∪ {0})
21difeq1i 3190 . 2 (ℕ0 ∖ {0}) = ((ℕ ∪ {0}) ∖ {0})
3 difun2 3442 . 2 ((ℕ ∪ {0}) ∖ {0}) = (ℕ ∖ {0})
4 0nnn 8754 . . 3 ¬ 0 ∈ ℕ
5 difsn 3657 . . 3 (¬ 0 ∈ ℕ → (ℕ ∖ {0}) = ℕ)
64, 5ax-mp 5 . 2 (ℕ ∖ {0}) = ℕ
72, 3, 63eqtrri 2165 1 ℕ = (ℕ0 ∖ {0})
Colors of variables: wff set class
Syntax hints:  ¬ wn 3   = wceq 1331  wcel 1480  cdif 3068  cun 3069  {csn 3527  0cc0 7627  cn 8727  0cn0 8984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7718  ax-resscn 7719  ax-1re 7721  ax-addrcl 7724  ax-0lt1 7733  ax-0id 7735  ax-rnegex 7736  ax-pre-ltirr 7739  ax-pre-lttrn 7741  ax-pre-ltadd 7743
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-xp 4545  df-cnv 4547  df-iota 5088  df-fv 5131  df-ov 5777  df-pnf 7809  df-mnf 7810  df-xr 7811  df-ltxr 7812  df-le 7813  df-inn 8728  df-n0 8985
This theorem is referenced by:  elnnne0  8998  nn0supp  9036  facnn  10480  fac0  10481  fzo0dvdseq  11562
  Copyright terms: Public domain W3C validator