![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dfn2 | GIF version |
Description: The set of positive integers defined in terms of nonnegative integers. (Contributed by NM, 23-Sep-2007.) (Proof shortened by Mario Carneiro, 13-Feb-2013.) |
Ref | Expression |
---|---|
dfn2 | ⊢ ℕ = (ℕ0 ∖ {0}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-n0 9244 | . . 3 ⊢ ℕ0 = (ℕ ∪ {0}) | |
2 | 1 | difeq1i 3274 | . 2 ⊢ (ℕ0 ∖ {0}) = ((ℕ ∪ {0}) ∖ {0}) |
3 | difun2 3527 | . 2 ⊢ ((ℕ ∪ {0}) ∖ {0}) = (ℕ ∖ {0}) | |
4 | 0nnn 9011 | . . 3 ⊢ ¬ 0 ∈ ℕ | |
5 | difsn 3756 | . . 3 ⊢ (¬ 0 ∈ ℕ → (ℕ ∖ {0}) = ℕ) | |
6 | 4, 5 | ax-mp 5 | . 2 ⊢ (ℕ ∖ {0}) = ℕ |
7 | 2, 3, 6 | 3eqtrri 2219 | 1 ⊢ ℕ = (ℕ0 ∖ {0}) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 = wceq 1364 ∈ wcel 2164 ∖ cdif 3151 ∪ cun 3152 {csn 3619 0cc0 7874 ℕcn 8984 ℕ0cn0 9243 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1re 7968 ax-addrcl 7971 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-pre-ltirr 7986 ax-pre-lttrn 7988 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-opab 4092 df-xp 4666 df-cnv 4668 df-iota 5216 df-fv 5263 df-ov 5922 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-inn 8985 df-n0 9244 |
This theorem is referenced by: elnnne0 9257 nn0supp 9295 facnn 10801 fac0 10802 fzo0dvdseq 12002 |
Copyright terms: Public domain | W3C validator |