| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfn2 | GIF version | ||
| Description: The set of positive integers defined in terms of nonnegative integers. (Contributed by NM, 23-Sep-2007.) (Proof shortened by Mario Carneiro, 13-Feb-2013.) |
| Ref | Expression |
|---|---|
| dfn2 | ⊢ ℕ = (ℕ0 ∖ {0}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-n0 9316 | . . 3 ⊢ ℕ0 = (ℕ ∪ {0}) | |
| 2 | 1 | difeq1i 3291 | . 2 ⊢ (ℕ0 ∖ {0}) = ((ℕ ∪ {0}) ∖ {0}) |
| 3 | difun2 3544 | . 2 ⊢ ((ℕ ∪ {0}) ∖ {0}) = (ℕ ∖ {0}) | |
| 4 | 0nnn 9083 | . . 3 ⊢ ¬ 0 ∈ ℕ | |
| 5 | difsn 3776 | . . 3 ⊢ (¬ 0 ∈ ℕ → (ℕ ∖ {0}) = ℕ) | |
| 6 | 4, 5 | ax-mp 5 | . 2 ⊢ (ℕ ∖ {0}) = ℕ |
| 7 | 2, 3, 6 | 3eqtrri 2232 | 1 ⊢ ℕ = (ℕ0 ∖ {0}) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 = wceq 1373 ∈ wcel 2177 ∖ cdif 3167 ∪ cun 3168 {csn 3638 0cc0 7945 ℕcn 9056 ℕ0cn0 9315 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1re 8039 ax-addrcl 8042 ax-0lt1 8051 ax-0id 8053 ax-rnegex 8054 ax-pre-ltirr 8057 ax-pre-lttrn 8059 ax-pre-ltadd 8061 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-opab 4114 df-xp 4689 df-cnv 4691 df-iota 5241 df-fv 5288 df-ov 5960 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-inn 9057 df-n0 9316 |
| This theorem is referenced by: elnnne0 9329 nn0supp 9367 facnn 10894 fac0 10895 fzo0dvdseq 12243 |
| Copyright terms: Public domain | W3C validator |