ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfn2 GIF version

Theorem dfn2 9220
Description: The set of positive integers defined in terms of nonnegative integers. (Contributed by NM, 23-Sep-2007.) (Proof shortened by Mario Carneiro, 13-Feb-2013.)
Assertion
Ref Expression
dfn2 ℕ = (ℕ0 ∖ {0})

Proof of Theorem dfn2
StepHypRef Expression
1 df-n0 9208 . . 3 0 = (ℕ ∪ {0})
21difeq1i 3264 . 2 (ℕ0 ∖ {0}) = ((ℕ ∪ {0}) ∖ {0})
3 difun2 3517 . 2 ((ℕ ∪ {0}) ∖ {0}) = (ℕ ∖ {0})
4 0nnn 8977 . . 3 ¬ 0 ∈ ℕ
5 difsn 3744 . . 3 (¬ 0 ∈ ℕ → (ℕ ∖ {0}) = ℕ)
64, 5ax-mp 5 . 2 (ℕ ∖ {0}) = ℕ
72, 3, 63eqtrri 2215 1 ℕ = (ℕ0 ∖ {0})
Colors of variables: wff set class
Syntax hints:  ¬ wn 3   = wceq 1364  wcel 2160  cdif 3141  cun 3142  {csn 3607  0cc0 7842  cn 8950  0cn0 9207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7933  ax-resscn 7934  ax-1re 7936  ax-addrcl 7939  ax-0lt1 7948  ax-0id 7950  ax-rnegex 7951  ax-pre-ltirr 7954  ax-pre-lttrn 7956  ax-pre-ltadd 7958
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-xp 4650  df-cnv 4652  df-iota 5196  df-fv 5243  df-ov 5900  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-inn 8951  df-n0 9208
This theorem is referenced by:  elnnne0  9221  nn0supp  9259  facnn  10742  fac0  10743  fzo0dvdseq  11898
  Copyright terms: Public domain W3C validator